Шрифт:
Интервал:
Закладка:
2863
Midjourney LLC (2022). Midjourney Documentation // https://docs.midjourney.com/v1/en
2864
Vincent J. (2022). ‘An engine for the imagination’: the rise of AI image generators. An interview with Midjourney founder David Holz. / The Verge, Aug 2, 2022 // https://www.theverge.com/2022/8/2/23287173/ai-image-generation-art-midjourney-multiverse-interview-david-holz
2865
Gu J., Zhai S., Zhang Y., Susskind J., Jaitly N. (2023). Matryoshka Diffusion Models // https://arxiv.org/abs/2310.15111
2866
Shonenkov A., Konstantinov M., Bakshandaeva D., Schuhmann C., Ivanova K., Klokova N. (2023). IF by DeepFloyd Lab at StabilityAI // https://github.com/deep-floyd/IF
2867
Разжигаев А. (2022). Kandinsky 2.0 — первая мультиязычная диффузия для генерации изображений по тексту. / Habr, 23 ноя 2022 // https://habr.com/ru/companies/sberbank/articles/701162/
2868
Razzhigaev A., Shakhmatov A., Maltseva A., Arkhipkin V., Pavlov I., Ryabov I., Kuts A., Panchenko A., Kuznetsov A., Dimitrov D. (2023). Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion // https://arxiv.org/abs/2310.03502
2869
Кузнецов А. (2022). Kandinsky 2.1, или Когда +0,1 значит очень много. / Habr, 4 апр 2023 // https://habr.com/ru/companies/sberbank/articles/725282/
2870
Димитров Д. (2023). Kandinsky 2.2 — новый шаг в направлении фотореализма / Habr, 12 июля 2023. // https://habr.com/ru/companies/sberbank/articles/747446/
2871
Valyaeva A. (2023). AI Has Already Created As Many Images As Photographers Have Taken in 150 Years. Statistics for 2023 / Everypixel Journal, 15.08.2023 // https://journal.everypixel.com/ai-image-statistics
2872
Zhang L., Agrawala M. (2023). Adding Conditional Control to Text-to-Image Diffusion Models // https://arxiv.org/abs/2302.05543
2873
Adobe (2023). Generative Fill // https://www.adobe.com/products/photoshop/generative-fill.html
2874
Marcus G. (2022). Horse rides astronaut / The Road to AI We Can Trust, 28.05.2022 // https://garymarcus.substack.com/p/horse-rides-astronaut
2875
Marcus G. (2022). Compositionality and Natural Language Understanding [slides] / The Challenge of Compositionality for AI / June 29-30, 2022 // https://compositionalintelligence.github.io/pdfs/Marcus.pdf
2876
* Промпт-инженер — специалист по составлению запросов (затравок, промптов) [prompts] для генеративных нейронных сетей; промпт-инжиниринг — дисциплина, занимающаяся вопросами сочинения или оптимизации промптов; по сути промпт-инжиниринг является развитием идеи «затравочного программирования», знакомого нам по цитировавшимся ранее высказываниям Андрея Карпатого и Гверна Бренуэна.
2877
McCammon J. (2023). Can a horse ride an astronaut? A taxonomy of antagonistic Midjourney prompts / 96 layers, 12 июня 2023 // https://www.96layers.ai/p/can-a-horse-ride-an-astronaut
2878
Lovering C., Pavlick E. (2023). Training Priors Predict Text-To-Image Model Performance // https://arxiv.org/abs/2306.01755
2879
Tsalicoglou C., Manhardt F., Tonioni A., Niemeyer M., Tombari F. (2023). TextMesh: Generation of Realistic 3D Meshes From Text Prompts // https://arxiv.org/abs/2304.12439
2880
Mildenhall B., Srinivasan P. P., Tancik M., Barron J. T., Ramamoorthi R., Ng R. (2020). NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis // https://arxiv.org/abs/2003.08934
2881
Niemeyer M., Barron J. T., Mildenhall B., Sajjadi M. S. M., Geiger A., Radwan N. (2023). RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs // https://arxiv.org/abs/2112.00724
2882
Poole B., Jain A., Barron J. T., Mildenhall B. (2022). DreamFusion: Text-to-3D using 2D Diffusion // https://arxiv.org/abs/2209.14988
2883
Müller T., Evans A., Schied C., Keller A. (2022). Instant Neural Graphics Primitives with a Multiresolution Hash Encoding // https://arxiv.org/abs/2201.05989
2884
Ben Melech Stan G., Wofk D., Fox S., Redden A., Saxton W., Yu J., Aflalo E., Tseng S.-Y., Nonato F., Muller M., Lal V. (2023). LDM3D: Latent Diffusion Model for 3D // https://arxiv.org/abs/2305.10853
2885
Ranftl R., Lasinger K., Hafner D., Schindler K., Koltun V. (2019). Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer // https://arxiv.org/abs/1907.01341
2886
Deitke M., Liu R., Wallingford M., Ngo H., Michel O., Kusupati A., Fan A., Laforte C., Voleti V., Gadre S. Y., VanderBilt E., Kembhavi A., Vondrick C., Gkioxari G., Ehsani K., Schmidt L., Farhadi A. (2023). Objaverse-XL: A Universe of 10M+ 3D Objects // https://arxiv.org/abs/2307.05663
2887
Deitke M., Schwenk D., Salvador J., Weihs L., Michel O., VanderBilt E., Schmidt L., Ehsani K., Kembhavi A., Farhadi A. (2022). Objaverse: A Universe of Annotated 3D Objects // https://arxiv.org/abs/2212.08051
2888
Cheung R. (2023). Is the Panic Over AI Art Overblown? We Speak With Artists and Experts. / Vice, February 22, 2023 // https://www.vice.com/en/article/ake53e/ai-art-lawsuits-midjourney-dalle-chatgpt
2889
Yu J., Xu Y., Koh J. Y., Luong T., Baid G., Wang Z., Vasudevan V., Ku A., Yang Y., Ayan B. K., Hutchinson B., Han W., Parekh Z., Li X., Zhang H., Baldridge J., Wu Y. (2022). Scaling Autoregressive Models for Content-Rich Text-to-Image Generation // https://arxiv.org/abs/2206.10789
2890
Craiyon LLC (2023). Frequently asked questions // https://www.craiyon.com/#faq
2891
Yuan L., Chen D., Chen Y.-L., Codella N., Dai X., Gao J., Hu H., Huang X., Li B., Li C., Liu C., Liu M., Liu Z., Lu Y., Shi Y., Wang L., Wang J., Xiao B., Xiao Z., Yang J., Zeng M., Zhou L., Zhang P. (2021). Florence: A New Foundation Model for Computer Vision // https://arxiv.org/abs/2111.11432
2892
Wu C., Liang J., Ji L., Yang F., Fang Y., Jiang D., Duan N. (2021). NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion // https://arxiv.org/abs/2111.12417
2893
Jia C., Yang Y., Xia Y., Chen Y.-T., Parekh Z., Pham H., Le Q. V., Sung Y., Li Z., Duerig T. (2021). Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision // https://arxiv.org/abs/2102.05918
2894
Riquelme C., Puigcerver J., Mustafa B., Neumann M.,