litbaza книги онлайнДомашняяСигнал и Шум. Почему одни прогнозы сбываются, а другие - нет - Нейт Сильвер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 43 44 45 46 47 48 49 50 51 ... 175
Перейти на страницу:

Со временем, к середине 1960‑х гг., компьютеры начали демонстрировать определенные навыки в прогнозировании погоды. Так, Bluefire, выдающий результаты примерно в 15 миллиардов раз быстрее, чем первый компьютерный прогноз (и, возможно, в квадрильон раз быстрее, чем Ричардсон), дает нам куда более осмысленные результаты благодаря скорости вычислений.

Прогнозы погоды в наши дни значительно чаще бывают верными, чем 15 или 20 лет назад. Однако, если скорость вычислений в последние десятилетия увеличивалась по экспоненте, прогресс в точности прогнозов погоды был хотя и стабильным, но медленным.

Можно назвать две основные причины сложившейся ситуации. Первая связана с тем, что мир имеет не одно и не два измерения. Самый надежный способ повысить правильность прогноза погоды – то есть на один шаг приблизиться к пониманию поведения каждой молекулы – состоит в уменьшении размера сетки, используемой для отображения атмосферы. Сектора Ричардсона имели размер 340 на 340 км, обеспечивая в лучшем случае слишком масштабный взгляд на планету (в квадрат 340 на 340 км² можно почти полностью вместить Нью-Йорк и Бостон – города, в которых может быть совершенно разная погода). Предположим, вы хотите в два раза уменьшить площадь секторов, до 170 на 170 км. Благодаря этому ваш прогноз станет более точным, но при этом увеличится количество уравнений, которые вам надо решить. В реальности количество уравнений вырастет не в два, а в четыре раза, поскольку вы уменьшаете масштаб и по длине, и по ширине. Иными словами, для того чтобы решить такую задачу, вам нужно примерно в 4 раза увеличить вычислительную мощность.

Сигнал и Шум. Почему одни прогнозы сбываются, а другие - нет

Однако вам нужно учитывать не только эти два измерения. В верхних слоях атмосферы могут проявляться одни закономерности, а в нижних слоях, над океанами и у поверхности Земли – совершенно иные. В трехмерной вселенной двукратное увеличение разрешения нашей сетки потребует восьмикратного повышения вычислительной мощности. Кроме этого, имеется и четвертое измерение – время. Если метеорологическая модель статична, в ней нет никакого толка – самое главное для нас состоит в том, чтобы знать, как меняется погода в каждый момент времени. Шторм движется со скоростью примерно 40 миль в час – если размеры вашей сетки составляют 40×40×40, то вы можете отслеживать его движение, собирая наблюдения каждый час. Однако если вы уменьшите размер сетки до 20×20×20, то шторм будет перемещаться из ячейки в ячейку каждые полчаса. Это значит, что вам нужно уменьшить в два раза и временной интервал, то есть вам потребуется в 16 раз больше вычислительных мощностей, чем изначально.

Сигнал и Шум. Почему одни прогнозы сбываются, а другие - нет

Но если бы эта проблема оказалась единственной, то ее вполне можно было бы решить. Хотя вам нужно, грубо говоря, в 16 раз увеличить вычислительную мощность, чтобы удвоить разрешение прогноза погоды, сама вычислительная мощность растет по экспоненте, удваиваясь примерно каждые два года{254}. Это значит, что вам нужно подождать всего восемь лет, и тогда ваш прогноз станет в два раза точнее; интересно, что NCAR обновляет свои суперкомпьютеры примерно с такой же частотой.

Предположим, что вам удалось разобраться с законами динамики движения жидкостей, которым подчиняются погодные системы. Они в целом следуют ньютоновским законам. Вам не будет особенно мешать и принцип неопределенности, интересный для физиков. Вы получили доступ к компьютерному шедевру типа Bluefire. Вы наняли Ричарда Лофта для проектирования и тестирования компьютерных программ. Что же еще может пойти не так в этом случае?

Почему теория хаоса так напоминает безумие

Итак, с чем может быть связана очередная ваша проблема? С теорией хаоса. Возможно, вам доводилось слышать выражение «взмах крыльев бабочки в Бразилии может привести к торнадо в Техасе». Изначально это было частью заглавия научной работы{255}, представленной в 1972 г. преподавателем Массачусетского технологического института Эдвардом Лоренцем, который начинал свою карьеру как метеоролог. Теория хаоса применима в отношении систем, для которых справедливы два утверждения:

1) системы динамичны, что означает, что поведение системы в один момент времени влияет на ее поведение в будущем;

2) системы нелинейны, иными словами, в них поддерживаются скорее экспоненциальные, а не аддитивные связи.

Динамические системы доставляют специалистам по прогнозированию немало проблем. Примером может служить описанный в главе 6 факт, свидетельствующий о том, что американская экономика постоянно вызывает цепную реакцию событий, что и является одной из причин, по которым ее развитие так сложно предсказать. Развитие при этом остается нелинейным: ценные бумаги, обеспеченные закладными, стимулировавшие начало финансового кризиса, были разработаны таким образом, что небольшие изменения в макроэкономических условиях значительно повышали риск дефолта по ним.

Совмещая все эти параметры, вы получаете на выходе настоящую неразбериху. Сам Лоренц не понимал, насколько масштабны эти проблемы, до тех пор пока (следуя той же традиции, что и Александр Флеминг и пенициллин{256} или команда «Нью-Йорк Никс» и баскетболист Джереми Лин) он не сделал свое открытие, причем совершенно случайно.

Лоренц и его команда разрабатывали программу прогнозирования погоды на одном из первых компьютеров, известном как Royal McBee LGP-30{257}. Исследователи полагали, что все идет как надо, но лишь до тех пор, пока компьютеры не начали выдавать совершенно бессмысленные результаты.

Они начали еще раз анализировать, почему так получается, что, вводя в точности те же самые, как они считали, данные, после запуска программы на выходе в качестве результата они получают в одном случае – чистое небо над Канзасом, а в другом – сведения о надвигавшемся шторме.

После нескольких недель, проведенных за проверкой оборудования и программ, Лоренц и его команда поняли, что исходные данные не были в точности одинаковыми: один из техников не вводил в систему цифры после третьего знака после запятой. Например, вместо того чтобы вводить в одно из полей сетки значение атмосферного давления, равное 29,5168, в расчетах использовалось число 29,517. Неужели вся разница возникла именно из-за этого?

1 ... 43 44 45 46 47 48 49 50 51 ... 175
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?