litbaza книги онлайнРазная литератураСто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 43 44 45 46 47 48 49 50 51 ... 64
Перейти на страницу:
могут не беспокоиться о тонкостях квантового устройства и во всех практических смыслах быть уверенными, что живут в одной классической реальности с Вигнером и всеми прочими.

В программу квантового дарвинизма входит и вывод правила Борна для вероятностей (глава 10). Без него, как мы видели, в квантовой механике «совсем никуда», и было бы замечательно не принимать его как независимую аксиому, а получить в качестве следствия из декогеренции и сопутствующих идей. Прогресс в этом направлении есть, но остается и проблема, которую квантовый дарвинизм и вообще декогеренция не решают: это механизм коллапса (или объяснение, почему кажется, что коллапс есть, если его нет). Декогеренция останавливается «вплотную перед коллапсом», объясняя, каким образом различные ветви волновой функции (охватывающей, разумеется, среду) теряют связь друг с другом. Большего от декогеренции требовать нельзя, потому что коллапс не может происходить в согласии с уравнением Шрёдингера, а декогеренция – это ожидаемые следствия из уравнения Шрёдингера, только примененного к огромному числу частиц. Для объяснения коллапса все равно требуется привлечь к делу избранную вами интерпретацию квантовой механики. Пожалуй, самым естественным образом идеи декогеренции встраиваются в многомировые концепции (глава 11), заодно снимая имевшуюся там неясность относительно того, по каким именно ветвям расходятся различные вселенные (на этот счет я уже проговорился чуть выше: по ветвям, которые растут из указательных состояний и декогерируют относительно друг друга).

Прямая математическая проверка декогеренции вообще и квантового дарвинизма в частности со сколько-нибудь реалистичным числом участников невозможна (в том числе и на компьютере) именно из-за колоссального числа участников; вместо этого теоретически исследовались многие очень упрощенные ситуации, и в них находили свое подтверждение обсуждавшиеся выше эффекты, такие как устойчивость указательных состояний, распространение корреляций по среде, множественность копий и насыщение классического восприятия из среды. Кроме того, в ситуациях, поддающихся контролю в силу их простоты, ставились и реальные эксперименты с целью зафиксировать подобные эффекты. Например, замена в кристаллической структуре алмаза одного атома углерода на азот, у которого на один электрон больше, привносит в это место «одинокий спин» этого лишнего электрона. Он и становится исследуемой квантовой системой. В качестве среды выступает тот же алмаз, а точнее – те 0,3 % ядер атомов углерода, которые представляют собой изотоп углерод-13, а не углерод-12, как все остальные. У них, в отличие от прочих, имеется ненулевой спин. «Одинокий спин» нашего электрона взаимодействует с несколькими ядерными спинами, а те взаимодействуют между собой. Спином электрона можно управлять (например, переворачивать его), а затем смотреть, как реагируют ядерные спины. Удалось зафиксировать и многократно повторенные «отпечатки», и быстрое насыщение среды информацией. Разумеется, до исчерпывающих проверок пока далеко, и по мере того, как экспериментальные возможности будут нарастать, представления о механизме производства классической реальности из квантовой будут, наверное, уточняться. Обсуждаемые в этой главе идеи продолжают эволюционировать, и концепция квантового дарвинизма едва ли останется без изменений, но определяющая роль среды в формировании иллюзии классического мира не вызывает серьезных сомнений.

И конечно, декогеренция и вся схема квантового дарвинизма требуют разделения мира на «системы» и «среду». Пока такого разделения не проведено, нет, по-видимому, и никакой проблемы измерения: волновая функция всего содержимого Вселенной развивается во времени согласно уравнению Шрёдингера, и больше обсуждать, собственно говоря, нечего. Проблемы измерения и коллапса появляются, когда мы разделяем мир по крайней мере на две части и желаем приписать определенное квантовое состояние одной из этих частей («системе»). Только тогда нас начинают заботить такие понятия, как «наблюдение/измерение», «корреляция» и «взаимодействие» (и даже «факты»). Поскольку окружающий мир, да и мы сами построены как иерархия систем, такие заботы нам не чужды.

23

Что из моря

Науку XX в. отделяют от науки предыдущего столетия (со всеми ее неоспоримыми достижениями, включающими понимание электромагнетизма и теплоты) не только множество конкретных открытий, но и как минимум два эпизода смены парадигмы. Одним из них было возникновение квантовой механики, а другим, более ранним по времени и никак не связанным, – создание теории относительности.

Теория относительности, в ее простом варианте так называемой специальной теории относительности, – это, по существу, механика быстрого движения и все, что с ней связано. В быстрое зачисляется движение со скоростями, составляющими заметную долю от скорости света (от скорости света в пустоте, как всегда подразумевается в таком контексте). Кое-что при этом происходит не так, как мы ожидаем исходя из нашего опыта очень медленного движения – опыта, который и отражен в правилах классической ньютоновской механики.

Среди прочего из «относительности» следует возможность «перемешивания пространства и времени». По Ньютону, пространство и время – полностью раздельные сущности, записанные, если угодно, в отдельных клетках Таблицы устройства мира. Но в действительности содержимое различных клеток комбинируется по определенным правилам. Если вы движетесь относительно меня, то ваше исчисление времени сочетает в себе мое представление о времени и мое представление о пространстве; а ваше понимание пространства включает не только то, что я понимаю под пространством, но и добавление от того, что я понимаю под временем. У меня – аналогичное представление о ваших понятиях пространства и времени{103}. Такие перемешивания зависят от относительной скорости; они-то и позволяют говорить о пространстве-времени как о чем-то едином, а не простом соединении двух различных понятий.

А еще «относительность» означает, что мы с вами полностью равноправны в описании природы, пока движемся относительно друг друга без изменения скорости, и вообще равноправны со всеми другими возможными подобными наблюдателями – в том смысле, что законы природы действуют для всех нас одинаково. Отсюда возникает требование к физическим теориям, которые мы изобретаем для описания природы: они должны хорошо переносить «перемешивание пространства и времени», которое требуется для согласования точек зрения различных движущихся наблюдателей.

Уравнение Шрёдингера не такое. Его структура разрушается при подобном перемешивании. Сам Шрёдингер первоначально собирался записать уравнение, которое его выдерживало бы, но задача оказалась малопонятной и уводящей «не совсем туда». В итоге его уравнение не учитывало требований относительности, но оказалось тем не менее сверхуспешным в огромном числе случаев, где больших скоростей нет. Однако задача придумать релятивистское (т. е. согласованное со специальной теорией относительности) уравнение никуда не делась.

В 1928 г. за эту задачу взялся Дирак – действуя способом, весьма «инновационным» по форме, и в результате за несколько драматичных лет произошло то, чего изначально не прогнозировал решительно никто.

Исходная проблема была, конечно, в том, что в уравнении Шрёдингера фигурирует темп изменения волновой функции со временем, а при перемешиваниях пространства и времени отсюда возникнут еще и «темпы» изменения волновой функции по пространственным направлениям, которых в исходном уравнении по отдельности нет, отчего структура уравнения нарушится. Вообще-то к тому времени уже было известно, как записать уравнение, структура которого выдерживает перемешивания пространства и времени, но туда входили слишком сложные образования – «темпы изменения темпов изменения», а именно, темп изменения во времени темпа изменения во времени, и еще три аналогичные штуки для пространственных направлений. Рецепт состоял в том, чтобы все их сложить{104}, что и давало хорошо себя ведущую конструкцию. Результат стал известен под названием уравнения Клейна – Гордона (или Клейна – Гордона – Фока), хотя именно это уравнение первым рассмотрел Шрёдингер; он отверг его по ряду причин, в том числе потому, что из-за появления тех самых «темпов темпов» правило Борна могло давать отрицательные вероятности, что бессмысленно. Кроме того, уравнение определенно не годилось уже даже для описания атома водорода.

Дирак же, полностью осознавая эти сложности, пожелал невозможного. Он хотел видеть в релятивистском уравнении не «темпы темпов», а одни только «просто темпы» изменения волновой функции. Прямого способа сконструировать такое уравнение не просматривалось. Чувствительный к математической красоте Дирак вообще был склонен находить или изобретать изящную математику, а затем идти за ней туда, куда вели ее внутренние законы. Такой порядок действий впоследствии вдохновлял многих; нет ясных причин, в силу которых он должен гарантировать успех, и преуспевали на таком пути действительно не все и не всегда, но случай с Дираком – образец жанра.

Перед его глазами был успех Паули по описанию спина (см. главу 9) с помощью «волшебной стрелки» и спиноров. «Волшебная стрелка» выражает направление в трехмерном пространстве, а обитатели

1 ... 43 44 45 46 47 48 49 50 51 ... 64
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?