litbaza книги онлайнДомашняяНа лужайке Эйнштейна. Что такое НИЧТО, и где начинается ВСЕ - Аманда Гефтер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 46 47 48 49 50 51 52 53 54 ... 131
Перейти на страницу:

На первый взгляд это кажется странным. Почему недостаток информации проявляет себя как нечто физическое, как тепло? «Может ли собственное невежество сжечь нас в буквальном смысле слова?» – записала я в своем блокноте. Такое вполне возможно – не будем забывать, о каких масштабах идет речь! Температура не относится к краеугольным характеристикам реальности – она возникает как коллективное свойство большого количества частиц на макроскопическом уровне. У отдельной молекулы нет температуры. Так что если вы выберете для исследования системы, состоящие из отдельных молекул, о температуре можно не думать. Усредните микроскопическую информацию, полученную в результате наблюдения за кишащим роем молекул, и вы получите тепло. Все дело в размерах – выберете побольше, и сможете выменивать информацию на температуру.

Когда я наливаю молоко в кофе, оно за короткий промежуток времени растворяется, придавая напитку однотонный оттенок мокко. Почему? Почему бы ему спонтанно не сложиться в слово «Hello»? Потому что в чашке кофе имеется около 1024 молекул и число их конфигураций, соответствующих равномерному цвету мокко, значительно превышает количество конфигураций, соответствующих слову «Hello». Сказать «значительно» – это не сказать почти ничего. Я могла бы сидеть здесь и ждать миллиарды лет, и все равно это было бы недостаточно долго, чтобы мой кофе послал мне горячее приветствие. «Какова вероятность, что молекулы воздуха в моей квартире соберутся в конфигурацию убегающей крысы?» – задалась я вопросом. А как насчет просто хвоста?

Второй закон термодинамики гласит: энтропия никогда не убывает. Это чисто статистическое утверждение, но этого достаточно, чтобы физики считали его законом природы. Он задает нам стрелу времени. Энтропия всегда увеличивается, потому что у состояний с высокой энтропией гораздо большая вероятность, чем у состояний с низкой энтропией. Если энтропия уменьшается – порция молока выделяется из кофе, дым из выхлопной трубы моего автомобиля засасывается обратно в трубу, расколотая чашка собирается по кусочкам обратно, – все это выглядит так, будто кто-то прокручивает время назад.

Но сказать только, что высокое значение энтропии более вероятно, чем низкое, еще не достаточно, чтобы определить стрелу времени. В конце концов, состояние с более высокой энтропией было более вероятным и в прошлом. Статистически энтропия должна быть всегда высокой, а когда она становится достаточно высокой и достигается состояние равновесия цвета кофе с молоком, дальше ей расти уже некуда. В равновесной Вселенной ничего не может произойти, лишь редкие статистические флуктуации, раз в несколько миллиардов лет. Но мы не живем в равновесии. Мы живем в мире, в котором постоянно что-то происходит. В мире, где энтропии по-прежнему есть куда расти. Чтобы получить стрелу времени, необходимо допустить, что по некоторым неизвестным нам причинам Вселенная образовалась в чрезвычайно маловероятном состоянии с низким значением энтропии. Молоко растворяется в утреннем кофе потому, что 13,7 млрд лет назад Вселенная образовалась в очень маловероятной конфигурации. Завтрак имеет космическое значение. Больше нет загадки, связанной со стрелой времени; зато появилась загадка, откуда столь невероятное состояние у Вселенной в момент запуска?

Когда я впервые услышала вопрос об этом загадочном низкоэнтропийном старте, он показался мне абсурдным. А как быть с космическим микроволновым фоном? Это снимок Вселенной, полученный почти в самом начале ее эволюции, и он показывает, что Вселенная была идеально гладкой, с неоднородностью порядка одной стотысячной. Это, конечно, на мой взгляд, вполне выглядело равновесием. Я полезла в книги за разъяснениями и в конце концов нашла одно. Низкое значение энтропии в начале времен – это не про термодинамическую энтропию, это про энтропию гравитационную. Для большого размера термодинамическая энтропия не так важна. Важна гравитация. А у гравитационной энтропии своя стрела времени, повернутая совсем в другую сторону, в противоположную. С гравитационной точки зрения, однородная Вселенная как раз созрела для комкования. Сила гравитации всегда притягивает, поэтому состояние без комков чрезвычайно маловероятно. Если бы гравитации дать волю, то вся Вселенная превратится в гигантскую черную дыру – состояние гравитационного равновесия.

Космическая стрела времени зависит от гравитационной энтропии, но когда я попыталась разобраться в этом вопросе глубже, я обнаружила, что физики, по сути, не знали, что такое гравитационная энтропия. Если энтропия – это мера отсутствия информации о микросостояниях, то какая микроскопическая информация закодирована в гравитации? Конечно, если бы физики знали ответ на этот вопрос, то есть если бы они знали микроскопическое строение гравитационного поля, – они бы больше не думали о стреле времени. Они бы обнаружили квантовую гравитацию.

Но есть одно место, где гравитационная энтропия вполне определена. Это горизонт событий черной дыры. Я вдруг поняла, что тут есть что-то поразительное, какой-то скрытый смысл. Я еще не знала, как его искать, но уже знала, что нашла тему для диплома.

Эйнштейн обнаружил, что масса и энергия искажают пространство, но он не ожидал, что найдутся такие места, где пространство замыкается само на себя, как змея, укусившая себя за хвост. Когда в массивной звезде выгорает топливо и она схлопывается под собственным весом, гравитация запускает необратимый процесс коллапса звезды. Становясь все плотнее и плотнее, звезда проваливается внутрь себя и прорывает самое ткань пространства-времени. Процесс подобен цепной реакции, и когда он заканчивается, пространство и время становится не узнать. Уилер придумал название для того, что получается, – черная дыра.

Черные дыры сводят вместе три столпа физики – общую теорию относительности, квантовую теорию, термодинамику, – чтобы они показали, на что каждый из них способен. Когда охотишься за окончательной реальностью, в черную дыру стоит заглянуть. Тут рвутся пространство и время, начинается и кончается Вселенная. Это то место, где из осколков восстанавливаются симметрии. В ее центре таится сингулярность, место, где кривизна пространства-времени становится бесконечной, а физика превращается в патологию. Так как радиус пространственно-временной кривизны устремляется вниз, к планковской длине, привычная физика, как мы знаем, отступает, обнажая terra incognita, пересечь которую способна только теория квантовой гравитации.

Учитывая сходство сингулярности черных дыр с сингулярностью в момент рождения Вселенной, я всегда считала, что черные дыры наиболее интересны именно наличием у них сингулярности. Я была неправа. Я довольно быстро выяснила, что по-настоящему интересные события происходят на внешней стороне черной дыры, на горизонте событий. Горизонт событий – это гравитационная точка невозврата, поверхность пространства-времени, где хватка сил гравитации точно уравновешивает скорость света. Это поверхность, на которой лучи света застыли на месте под действием силы тяжести. Для наблюдателя вне черной дыры горизонт событий – это своего рода космическая стена. Поскольку свет не может пройти сквозь нее, то наблюдатель никогда не сможет увидеть что-либо на другой ее стороне. При любых намерениях и целях можно считать, что у нее просто нет другой стороны. Другая сторона принципиально и во веки веков недостижима – что бы за ней ни происходило, это не может иметь никакого физического воздействия на внешний мир. Это то, что делает черную дыру черной. Горизонт событий разрезает мир на части.

1 ... 46 47 48 49 50 51 52 53 54 ... 131
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?