Шрифт:
Интервал:
Закладка:
Пусть кто-либо задумает какое-нибудь число, относящееся к деньгам, к дням, к часам или к «каковой-либо иной числимой вещи». Остановимся на примере перстня, надетого на 2-й сустав мизинца (т. е. 5-го пальца) 4-го из 8 человек. Когда в это общество является отгадчик, его спрашивают: у кого из восьми человек (обозначенных номерами от 1 до 8) на каком пальце и на котором суставе находится перстень?
«Он же рече: кто-либо от вас умножи оного, который взял через 2, и к тому приложи 5, потом паки (снова) умножи чрез 5, также приложи перст на нем же есть перстень (т. е. к полученному прибавь номер пальца с перстнем). А потом умножи чрез 10, и приложи сустав на нем же перстень взложен, и от сих произведенное число скажи ми, по немуже искомое получиши.
Они же твориша (поступили) якоже повеле им, умножаху четвертого человека, который взял перстень, и прочая вся, яже велеше им; якоже явлено есть (см. выкладки на стр. 255); из всего собрания пришло ему число 702, из него же он вычитал 250, осталось 452, т. е. 4-й человек, 5-й палец, 2-й сустав».
Не надо удивляться, что этот арифметический фокус был известен еще 200 лет назад: задачи совершенно подобного же рода я нашел в одном из первых сборников математических развлечений, именно у Баше-де-Мезирьяка, в его книге «Занимательные и приятные числовые задачи», вышедшей в 1612 г.; а туда она попала из сочинения Леонарда Пизано (1202 г.). Нужно вообще заметить, что большая часть математических игр, головоломок и развлечений, которые в ходу в настоящее время, очень древнего происхождения.
Кому приходилось присутствовать на сеансах нашего русского вычислителя Арраго, тот, без сомнения, не мог не поразиться его изумительными счетными способностями. Тут уж перед нами не фокус, а редкое природное дарование. Не существует «трюков» для выполнения в уме таких выкладок, как возвышение в куб любого четырехзначного числа или умножение любого шестизначного числа на шестизначное. Куб числа 4729, например, Арраго вычислил при мне в уме менее чем в одну минуту (результат 105756712489), а на умножение 679321x887064, также в уме, употребил всего 1 1/2 минуты (результат 602601203544).
Я имел возможность наблюдать вычислительную работу этого феноменального счетчика не только на эстраде, но и в домашней обстановке, с глазу на глаз, и мог убедиться, что никакими особыми вычислительными приемами он не пользуется, а вычисляет в уме в общем так же, как мы на бумаге. Но его необычайная память на числа помогает ему обходиться без записи промежуточных результатов, а быстрая сообразительность позволяет оперировать с двузначными числами с такою же легкостью, с какою мы производим действия над числами однозначными. Благодаря этому умножение шестизначного числа на шестизначное является для него задачей не большей, примерно, трудности, чем для нас - умножение трехзначного на трехзначное.
Такие феномены, как Арраго или - на Западе - Иноди, Диаманди, Рюкле, встречаются единицами. Но наряду с ними подвизаются и эстрадные математики иного рода, основывающие свое искусство на тех или иных арифметических трюках. Вам, быть может, приходилось слышать или даже присутствовать самим на сеансах «гениальных математиков», вычислявших в уме с поразительной быстротой, сколько вам недель, дней, минут, секунд, в какой день недели вы родились, какой день будет такого-то числа такого-то года, и т. п. Чтобы выполнить большую часть этих вычислений, вовсе не нужно, однако, обладать необычайными математическими способностями. То же самое может после недолгого упражнения проделать и каждый из нас. Нужно только знать кое-какие секреты этих фокусов, - разоблачением которых мы сейчас и займемся.
Чтобы научиться по числу лет быстро определять число заключающихся в них недель, нужно только уметь ускоренно множить на 52, т. е. на число недель в году.
Задача № 53
Пусть дано перемножить 36 x 52. «Счетчик» сразу же, без заминки, говорит вам результат: 1872. Как он его получил?
Решение
Довольно просто: 52 состоит из 50 и 2; 36 умножается на 5 через деление пополам; получается 18 - это две первые цифры результата; далее умножение 36 на 2 делается как обыкновенно; получают 72, которые и приписываются к прежним 18-ти: 1872.
Легко видеть, почему это так. Умножить на 52 - значит умножить на 50 и на 2; но вместо того, чтобы умножить на 50, можно половину умножить на 100 - отсюда понятно деление пополам; умножение же на 100достигается припиской 72-х (36 x 2), отчего каждая цифра увеличивается в 100раз (передвигается на два разряда влево).
Теперь понятно, почему «гениальный» счетчик так быстро отвечает на вопрос «мне столько-то лет; сколько мне недель?». Умножив число лет на 52, ему остается только прибавить еще к произведению седьмую часть числа лет, потому что в году 365 дней, т. е. 52 недели и 1 день: каждые 7 лет из этих избыточных дней накопляется лишняя неделя[73].
Если спрашивают не о числе недель, а о числе дней, то прибегают к такому приему: половину числа лет множат на 73 и приписывают нуль - результат и будет искомым числом. Эта формула станет понятна, если заметить, что 730 = 365 x 2. Если мне 24 года, то число дней получим, умножив 12 x 73 = 876 и приписав нуль - 8760. Самое умножение на 73 также производится сокращенным образом, о чем речь впереди (стр. 261).
Поправка в несколько дней, происходящая от високосных лет, обыкновенно в расчет не принимается, хотя ее легко ввести, прибавив к результату четверть числа лет, - в нашем примере 24:4 = 6; общий результат, следовательно, 8766[74].
Прием для вычисления числа минут читатель, после сказанного в следующей статье, не затруднится найти самостоятельно.