Шрифт:
Интервал:
Закладка:
Дальнейшее упрощение состоит в том, что вместо полного числа дней месяца (при исчислении числа дней, протекших после 1января заданного года) принимают в расчет только его остаток от деления на 7. Далее, разделив 1900 на 28, получаем в остатке 24 года, в которых содержится 5 високосных лет; прибавив их к 24-м и найдя, что сумма 24 + 5, т. е. 29, дает при делении на 7 остаток 1, определяем, что 1 января 1900 года было в 1-й день недели. Отсюда для первых чисел каждого месяца получаем следующие цифры, определяющие соответствующие им дни недели (мы будем их называть «остаточными числами»).
Остаточные числа для:
Запомнить эти числа нетрудно; кроме того, их можно нанести на циферблат карманных часов, поставив возле каждой цифры циферблата соответствующее число точек[78].
Сделаем теперь расчет дня недели, например, для 31 марта 1923 г.
Остаток от деления на 7 - это 0, т. е. суббота.
Задача № 55
Найти день недели 16 апреля 1948 г.
Решение
Остаток от деления на 7 - это 6, т. е. пятница.
Задача № 56
Найти день недели 29 февраля 1912 г. (нов. ст.).
Решение
* Принято во внимание, что один високосный год уже был учтен, когда мы взяли дату 29 февраля. Поэтому пишем не 3 високосных года, а 2.
Остаток от деления на 7 - это 5, т. е. четверг.
Для дат предшествующих столетий (XIX, XVIII и т. д.) можно пользоваться теми же числами; но надо помнить, что в XIX веке разница между новым и старым стилем была не 13, а 12 дней; кроме того, при делении 1800:28 получается в остатке 8, что вместе с 2 високосными годами в этом остатке составляет 10 (или 10-7 = 3), т. е. соответствующее характерное число для дат XIX века должно быть увеличено на 3-1 = 2. Так что, например, день недели 31 декабря 1864 г. нов. стиля мы определим сначала по предыдущему, а затем внесем соответствующую поправку - прибавим 2 дня.
Остаток от деления на 7 - это 0, т. е. суббота.
Задача № 57
Найти день недели 25 апреля нов. ст. 1886 г.
Решение
Остаток от деления на 7 - это 1, т. е. воскресенье.
После недолгого упражнения можно и еще более упростить вычисления, а именно - писать, вместо приведенных здесь чисел, прямо их остатки от деления на 7. Например, день недели 24 марта 1934 г. мы определим в результате следующих простых выкладок:
Искомый день - суббота.
Подобного рода упрощенными приемами пользуются обычно те эстрадные вычислители, которые показывают публике свое искусство быстрого счета. Как видите, все это очень просто и может быть выполнено каждым после непродолжительного упражнения[79].
Знание этих маленьких секретов может не только пригодиться нам для выполнения фокусов, но и сослужить службу в повседневной жизни. Мы легко можем превратить свои карманные часы в «вечный календарь, с помощью которого сможем определить дни недели любых дат какого угодно года. Для этого понадобится только, осторожно сняв стеклышко с часов, нанести на циферблате тушью точки возле цифр в числе, соответствующем таблице (стр. 265). Как пользоваться этими точками, мы уже знаем. Особенно просто это для дат XX столетия: к числу точек прибавляют число месяца, последние две цифры года и частное от деления их на 4, а еще лучше - остатки от деления этих чисел на 7. Остаток от деления суммы этих 4 слагаемых на 7 показывает день недели, а именно:
0 - суббота.
1 - воскресенье.
2 - понедельник.
3 - вторник и т. д.
Еще проще пользование часами-календарем для дат текущего года. Для каждого года нужно лишь держать в памяти остаток от деления на 7 суммы числа прошедших от начала века лет и четверти этого числа; этот остаток постоянно должен прибавляться к числу месяца определяемой даты вместе с числом точек возле соответствующей цифры. Остаток этот можно было бы прибавить к числу точек и наносить ежегодно на циферблат, чтобы не было надобности вводить его в вычисление особо. Но едва ли это практично.
Само собою разумеется, что «вечный календарь» указанного типа возможно устроить не только на карманных часах. Вы можете просто приклеить к карандашу, линейке, к краю записной книжки, вообще к любому предмету, часто бывающему у вас под руками, узенькую полоску бумаги с соответствующей табличкой чисел, характерных для каждого месяца, и маленький вездесущий вечный календарь готов.
Читателям, желающим испытать свои силы в решении разнообразных календарных задач, предлагаю ответить на следующие вопросы: