litbaza книги онлайнДомашняяВеличайшие математические задачи - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 50 51 52 53 54 55 56 57 58 ... 100
Перейти на страницу:

2, 3, 4 = 2², 5, 7, 8 = 2³, 9 = 3², 11,

поэтому взвешенный подсчет дает

log 2 + log 3 + log 2 + log 5 + log 7 + log 2 + log 3 + log 11,

что составляет примерно 10,23.

Воспользовавшись методами анализа, информацию об этом более хитроумном способе подсчета простых чисел можно превратить в информацию об обычном способе. Однако этот метод приводит к более простым формулам, и присутствие логарифма — не слишком дорогая цена за это. В этих терминах точная формула Римана говорит о том, что взвешенный подсчет до предела x эквивалентен

Величайшие математические задачи

где Σ обозначает сумму по всем числам ρ, для которых ζ(ρ) равна нулю, исключая отрицательные четные целые числа. Эти значения называются нетривиальными нулями дзета-функции. Тривиальные нули — это отрицательные четные целые числа −2, −4, −6… Во всех этих точках дзета-функция равняется нулю из-за формулы, которая используется в определении аналитического продолжения, но, как выяснилось, для римановой формулы эти нули несущественны (как и почти везде в других местах).

На случай, если формула вас немного пугает, я укажу главное: хитрый способ подсчета простых чисел до заданного предела x, который при помощи кое-каких аналитических фокусов можно превратить в обычный способ, в точности эквивалентен сумме по всем нетривиальным нулям дзета-функции простого выражения xρ/ρ плюс некая несложная функция от x. Если вы специалист по комплексному анализу, вы сразу увидите, что доказательство теоремы о распределении простых чисел эквивалентно доказательству того, что взвешенный подсчет до предела x асимптотически сходится к x. Воспользовавшись комплексным анализом, получим: это утверждение верно, если у всех нетривиальных нулей дзета-функции действительная часть лежит между 0 и 1. Чебышев не смог этого доказать, но подошел достаточно близко, чтобы извлечь полезную информацию.

Почему нули дзета-функции так важны? Одна из базовых теорем комплексного анализа утверждает, что при некоторых формальных условиях функция комплексной переменной полностью определяется значениями переменной, при которых функция равна нулю или бесконечности, плюс некоторая дополнительная информация о поведении функции в этих точках. Эти особые точки известны как нули и полюсы функции. В действительном анализе эта теорема не работает — и это одна из причин, по которым комплексный анализ завоевал такую популярность, несмотря на необходимость извлекать корень квадратный из −1. У дзета-функции один полюс (при s = 1), так что все ее характеристики определяются нулями (если, конечно, не забывать о существовании этого единственного полюса).

Для удобства Риман работал в основном с зависимой кси-функцией ξ (x), которая тесно связана с дзета-функцией и получается из метода аналитического продолжения. Он заметил:

«Весьма вероятно, что все [нули кси-функции] действительны. Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».

Это заявление о кси-функции эквивалентно аналогичному заявлению о зависимой от нее дзета-функции. А именно: все нетривиальные нули дзета-функции представляют собой комплексные числа вида: они лежат на критической линии «действительная часть равна 1/2» (см. рис. 35). Эта версия замечания и есть знаменитая гипотеза Римана.

Величайшие математические задачи

Замечание Римана звучит достаточно небрежно, как будто высказано между делом и эта гипотеза не имеет особого значения. И это действительно так, если говорить только о программе Римана по доказательству теоремы о распределении простых чисел. Но во многих других вопросах верно обратное. Многие считают гипотезу Римана важнейшим из остающихся на сегодняшний день открытыми математических вопросов.

Чтобы понять, почему это так, мы должны последовать за рассуждениями Римана чуть дальше. В тот момент ученый был нацелен на теорему о распределении простых чисел. Его точная формула предлагала верный путь к этому достижению: нужно было разобраться в нулях дзета-функции или эквивалентной ей кси-функции. Полная риманова гипотеза для этого не нужна, достаточно доказать, что у всех нетривиальных нулей дзета-функции действительная часть лежит в промежутке от 0 до 1, т. е. что сами комплексные корни лежат на расстоянии не более 1/2 от римановой критической линии — в так называемой критической полосе. Это свойство нулей подразумевает, что сумма по всем нулям дзета-функции, фигурирующая в приведенной выше точной формуле, представляет собой конечную константу. Асимптотически для больших x она вообще может потеряться. Единственный член формулы, который сохранит свое значение при очень больших x, это сам x. Все остальные сложные слагаемые асимптотически пропадают в сравнении с x. Следовательно, взвешенная сумма асимптотически стремится к x, и это доказывает теорему о распределении простых чисел. Так что, по иронии судьбы, роль нулей дзета-функции заключается в том, чтобы доказать, что они не вносят существенного вклада в точную формулу.

Риман так и не довел свою программу до логического конца. Более того, он никогда больше ничего не писал по этому вопросу. Но два других математика, приняв у него эстафету, показали, что догадка Римана верна. В 1896 г. Жак Адамар и Шарль-Жан де ла Валле Пуссен независимо друг от друга вывели теорему о распределении простых чисел, доказав, что все нетривиальные нули дзета-функции лежат в пределах критической полосы. Доказательства у обоих получились очень сложными и техничными, но тем не менее свою задачу они выполнили. Возникла новая мощная область математики — аналитическая теория чисел. Применение ей нашлось в самых разных уголках теории чисел: с ее помощью решали давние задачи и выявляли новые закономерности. Другие математики позже нашли несколько более простых доказательств теоремы о числе простых, а Атле Сельберг и Пал Эрдеш открыли даже очень сложное доказательство, вовсе не требовавшее применения комплексного анализа. Но к тому моменту при помощи идеи Римана было доказано бесчисленное множество важных теорем, включая аппроксимации многих функций теории чисел. Так что это новое доказательство хоть и добавило в эту историю каплю иронии, но ни на что, в сущности, не повлияло. В 1980 г. Дональд Ньюман нашел гораздо более простое доказательство, для которого достаточно оказалось всего лишь одной из самых базовых теорем комплексного анализа — теоремы Коши.

Хотя Риман объявил свою гипотезу ненужной для достижения ближайших целей, оказалось, что она жизненно необходима для разрешения многих других вопросов теории чисел. Прежде чем обсуждать гипотезу Римана, нам стоит взглянуть на некоторые теоремы, которые — если бы гипотеза была доказана — из нее следуют.

1 ... 50 51 52 53 54 55 56 57 58 ... 100
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?