litbaza книги онлайнДомашняяКак не ошибаться. Сила математического мышления - Джордан Элленберг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 52 53 54 55 56 57 58 59 60 ... 160
Перейти на страницу:

Было бы еще больше оснований утверждать это, если вы протестировали бы тот же ген (или зеленые конфетки из желе) двадцать раз и получили статистически значимый результат только в одном случае.

Но что если двадцать типов конфеток были бы протестированы двадцать раз двадцатью разными исследовательскими группами в двадцати разных лабораториях? В девятнадцати лабораторий не обнаружено статистически значимого воздействия, поэтому исследователи не пишут научные работы по полученным результатам – кто станет публиковать сенсационную новость о том, что зеленые конфетки из желе не имеют никакого отношения к состоянию вашей кожи? Ученые из двадцатой лаборатории (везунчики) обнаруживают статистически значимое воздействие, поскольку им повезло – но они не знают, что им повезло. Все, что они могут сказать, так это то, что они всего один раз проверили гипотезу «зеленые конфетки из желе вызывают прыщи», и она прошла тест на статистическую значимость.

Если вы принимаете решение, какого цвета конфетки можно есть, только на основании опубликованных работ, вы совершаете ту же ошибку, что и армейские чиновники, которые подсчитывали пробоины только на самолетах, вернувшихся после воздушных боев. Как отметил Абрахам Вальд, если вы хотите получить правдивую картину происходящего, необходимо принять во внимание и те самолеты, которые не вернулись.

Это так называемая проблема архивного ящика: в той или иной области науки формируется крайне искаженная картина доказательств в пользу гипотезы, когда широкое распространение полученных данных ограничено порогом статистической значимости. Но мы уже дали этой проблеме другое название. Речь идет о балтиморском брокере. Везучий ученый, который взволнованно готовит публикацию по теме «Связь между зелеными конфетками из желе и дерматологическими проблемами», напоминает наивного инвестора, который отдает все свои сбережения жуликоватому брокеру. Этот инвестор, так же как и ученый, видит только результаты одного эксперимента, по воле случая завершившегося успешно, но ничего не знает о гораздо более многочисленной группе неудавшихся экспериментов.

Однако здесь есть одно существенное различие. В науке нет нечистых на руку мошенников и невинных жертв. Когда члены научного сообщества отправляют результаты неудавшихся экспериментов в архив, они играют и ту и другую роль. Они совершают мошенничество по отношению к самим себе.

И все это при условии, что ученые, о которых идет речь, ведут справедливую игру. Но так бывает не всегда. Помните проблему пространства для маневра, из-за которой попали в ловушку искатели библейских кодов? Ученые, которые вынуждены публиковать свои работы, чтобы не разрушить научной карьеры, могут не устоять перед соблазном того же пространства для маневра. Если вы проводите собственный статистический анализ и получаете p-значение 0,06, вы должны сделать вывод, что ваши результаты статистически незначимы. Однако, чтобы отправить результаты многих лет работы в архив, требуется высокая психологическая устойчивость. В конце концов, разве данные об этом конкретном участнике экспериментального исследования не выглядят несколько подозрительными? Если это резко отклоняющееся значение, может быть, стоит попытаться удалить эту строку из таблицы данных. Был ли учтен возраст? Были ли учтены погодные условия? Был ли учтен возраст и погодные условия? Если только вы позволите себе слегка подправить и завуалировать результаты статистической проверки полученных данных, во многих случаях вам удастся снизить p-значение с 0,06 до 0,04. Профессор Пенсильванского университета Ури Саймонсон, ведущий ученый в области изучения проблемы воспроизводимости результатов исследований, называет эту практику «p-хакингом»{127}[142]. Хакинг p-значения бывает, как правило, не таким грубым, каким я его здесь представил, и редко происходит по злому умыслу. P-хакеры искренне верят в истинность своих гипотез (как в случае искателей библейских кодов), а когда вы верите во что-то, легко обосновать, что анализ, который дает пригодное для публикации p-значение, – это именно то, что вам и следовало сделать с самого начала.

Однако все знают, что на самом деле это неправильно. Когда ученым кажется, что их никто не слышит, они говорят о своей практике: «Пытаем данные, пока они не сознаются». Следовательно, достоверность результатов соответствует тому, что можно ожидать от признаний, полученных силой.

Оценить масштаб проблемы p-хакинга не так просто: невозможно проанализировать работы, которые были отправлены в архив или вообще не были написаны, подобно тому как нельзя изучить самолеты, сбитые во время воздушых боев, чтобы найти места пробоин. Но вы, так же как Абрахам Вальд, можете сделать ряд логических выводов по поводу данных, которые не можете получить напрямую.

Вспомните о «Международном журнале гаруспиции». Что вы увидели бы, если могли бы изучить все когда-либо опубликованные работы и записать обнаруженные там p-значения? Не забывайте о том, что в данном случае нулевая гипотеза неизменно истинна, поскольку гаруспиция не работает. Следовательно, 5 % экспериментов дадут p-значение 0,05 или меньше, 4 % получат p-значение не более 0,04, 3 % – не более 0,03 и так далее. Эту же идею можно сформулировать так: количество экспериментов, обеспечивающих p-значение от 0,04 до 0,05, должно быть примерно таким же, что и в случае p-значения от 0,03 до 0,04, от 0,02 до 0,03 и так далее. Если отобразить все p-значения, упомянутые во всех работах, которые вы изучили, получится такой плоский график.

Как не ошибаться. Сила математического мышления

Но что если вы посмотрите реальный журнал? Хотелось бы надеяться, что многие из тех феноменов, информацию о которых вы ищете, действительно существуют; это повысит вероятность того, что эксперименты получат хорошее (а значит, низкое) p-значение. В таком случае график p-значений должен быть нисходящим.

Как не ошибаться. Сила математического мышления

Однако это не совсем то, что происходит в реальной жизни. В самых разных областях науки, от политологии до экономики, психологии и социологии, детективы от статистики обнаружили заметный восходящий наклон графика при приближении p-значений к порогу 0,05{128}.

1 ... 52 53 54 55 56 57 58 59 60 ... 160
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?