Шрифт:
Интервал:
Закладка:
Blakemore, C., & Van Sluyters, R. C. (1975). Innate and environmental factors in the development of the kitten’s visual cortex. Journal of Physiology, 248(3), 663–716.
Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 331–356.
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., et al. (2016). End to end learning for self-driving cars. arXiv e-prints. Retrieved from https://ui.adsabs.harvard.edu/abs/2016arXiv160407316B.
Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157–189.
Boycott, B. B. (2001). Brian B. Boycott. In L. R. Squire (Ed.), The history of neuroscience in autobiography, volume 3. Cambridge, MA: Academic Press.
Boycott, B., & Wässle, H. (1999). Parallel processing in the mammalian retina: The Proctor Lecture. Investigative Ophthalmology and Visual Science, 40(7), 1313–1327.
Britten, K. H. (2008). Mechanisms of self-motion perception. Annual Review of Neuroscience, 31, 389–410.
Brown, R. E., & Milner, P. M. (2003). The legacy of Donald O. Hebb: More than the Hebb Synapse. Nature Reviews Neuroscience, 4, 1013.
Butts, D. A., Kanold, P. O., & Shatz, C. J. (2007). A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biology, 5(3), e61.
Campbell, M. (2018). Mastering board games. Science, 362(6419), 1118.
Cang, J., Renteria, R. C., Kaneko, M., Liu, X., Copenhagen, D. R., & Stryker, M. P. (2005). Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron, 48(5), 797–809.
Carandini, M. (2006). What simple and complex cells compute. Journal of Physiology, 577(Pt 2), 463–466.
Chang, L., & Tsao, D. Y. (2017). The code for facial identity in the primate brain. Cell, 169(6), 1013–1028 e1014.
Chapman, B., & Stryker, M. P. (1993). Development of orientation selectivity in ferret visual cortex and effects of deprivation. Journal of Neuroscience, 13(12), 5251–5262.
Chatterjee, R. (2015). Out of the darkness. Science, 350(6259), 372–375.
Chen, J., Yamahachi, H., & Gilbert, C. D. (2010). Experience-dependent gene expression in adult visual cortex. Cerebral Cortex, 20(3), 650–660.
Cohen, E., & Sterling, P. (1990). Demonstration of cell types among cone bipolar neurons of cat retina. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 330(1258), 305–321.
Coimbra, J. P., Marceliano, M. L., Andrade-da-Costa, B. L., & Yamada, E. S. (2006). The retina of tyrant flycatchers: Topographic organization of neuronal density and size in the ganglion cell layer of the great kiskadee Pitangus sulphuratus and the rusty margined flycatcher Myiozetetes cayanensis (Aves: Tyrannidae). Brain, Behavior and Evolution, 68(1), 15–25.
Costandi, M. (2009, February 10). Where are old memories stored in the brain? Scientific American. Retrieved from https://www.scientific american.com/article/the-memory-trace.
Crist, R. E., Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1997). Perceptual learning of spatial localization: Specificity for orientation, position, and context. Journal of Neurophysiology, 78(6), 2889–2894.
Dahne, S., Wilbert, N., & Wiskott, L. (2014). Slow feature analysis on retinal waves leads to V1 complex cells. PLOS Computational Biology, 10(5), e1003564.
Das, S. (2017). CNN architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more. Retrieved from https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5.
Daw, N. (2006). Visual development (2nd ed.). New York: Springer.
Denk, W., Briggman, K. L., & Helmstaedter, M. (2012). Structural neurobiology: Missing link to a mechanistic understanding of neural computation. Nature Reviews Neuroscience, 13(5), 351–358.
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415–434.
Dolan, T., & Fernandez-Juricic, E. (2010). Retinal ganglion cell topography of five species of ground-foraging birds. Brain, Behavior and Evolution, 75(2), 111–121.
Dormal, G., Lepore, F., & Collignon, O. (2012). Plasticity of the dorsal “spatial” stream in visually deprived individuals. Neural Plasticity, 2012, 659–687.
Dowling, J. E. (2012). The retina: An approachable part of the brain. Cambridge, MA: Harvard University Press.
Dowling, J. E., & Dowling, J. L. (2016). Vision: How it works and what can go wrong. Cambridge, MA: MIT Press.
Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N., & Harvey, C. D. (2017). Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell, 170(5), 986–999 e916.
Dvorak, D., Mark, R., & Reymond, L. (1983). Factors underlying falcon grating acuity. Nature, 303(5919), 729–730.
Eickhoff, S. B., Yeo, B. T. T., & Genon, S. (2018). Imaging-based parcellations of the human brain. Nature Reviews Neuroscience, 19(11), 672–686.
Eliot, V. (Ed.) (1971). The Waste Land: A Facsimile and Transcript of the Original Drafts. New York: Houghton Mifflin.
El-Shamayleh, Y., Kumbhani, R. D., Dhruv, N. T., & Movshon, J. A. (2013). Visual response properties of V1 neurons projecting to V2 in macaque. Journal of Neuroscience, 33(42), 16 594–16 605.
Escher, S. A., Tucker, A. M., Lundin, T. M., & Grabiner, M. D. (1998). Smokeless tobacco, reaction time, and strength in athletes. Medicine and Science in Sports and Exercise, 30(10), 1548–1551.
Espinosa, J. S., & Stryker, M. P. (2012). Development and plasticity of the primary visual cortex. Neuron, 75(2), 230–249.
Euler, T., Detwiler, P. B., & Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature, 418(6900), 845–852.
Euler, T., & Wässle, H. (1995). Immunocytochemical identification of cone bipolar cells in the rat retina. Journal of Comparative Neurology, 361(3), 461–478.
Fisher, C., & Freiwald, W. A. (2015). Whole-agent selectivity within the macaque face-processing system. Proceedings of the National Academy of Sciences, 112(47), 14 717–14 722.