Шрифт:
Интервал:
Закладка:
Пару лет назад Мацузава стал задавать ему задачи нового типа, тоже с числами. При нажатии на кнопку «Старт» на экране случайным образом высвечивались числа от 1 до 5. Через 0,65 секунды числа превращались в белые квадратики. Задание состояло в том, чтобы нажать на белые квадратики в правильном порядке — предварительно запомнив, на месте какого числа возник какой квадратик.
Аюму выполнял это задание правильно в 80 процентах случаев, что составляет примерно столько же, что и в контрольной группе японских детей. Тогда Мацузава уменьшил до 0,43 секунды время, в течение которого числа оставались видны на экране. Аюму не почувствовал серьезной разницы, в то время как показатели, продемонстрированные детьми, существенно упали — процент успешного выполнения стал равен примерно 60. Когда Мацузава уменьшил время, в течение которого числа оставались видимыми, до 0,21 секунды, Аюму по-прежнему показывал 80 процентов, дети же опустились до 40 процентов.
Этот эксперимент показал, что Аюму обладает необычайной фотографической памятью. Такая память есть и у других шимпанзе в Инуяме, но ни у одного из них она не развита так хорошо. В дальнейших экспериментах Мацузава увеличил количество цифр, и теперь Аюму запоминает расположение восьми цифр, которые видны лишь в продолжение 0,21 секунды. Кроме того, Мацузава уменьшил и интервал времени для запоминания — оказалось, Аюму способен запомнить расположение пяти цифр, видимых только в течение 0,09 секунды, чего человеческому глазу едва хватает, чтобы зафиксировать числа сами по себе, не говоря уж о том, чтобы их запомнить. Этот потрясающий талант к мгновенному запоминанию, скорее всего, связан с необходимостью принятия быстрых решений — например, о количестве врагов, — что жизненно важно в мире дикой природы.
* * *
Изучение пределов способностей животных к восприятию чисел естественным образом подводит нас к вопросу о наших врожденных способностях. Ученым, которые хотят исследовать мозг, не засоренный приобретенными знаниями (насколько это вообще возможно), требуются испытуемые возраста столь юного, сколь это возможно. Проверка врожденного математического восприятия у младенцев возрастом в несколько месяцев стала в наши дни обычным делом. Поскольку в этом возрасте дети еще не умеют не только говорить, но даже толком контролировать свое собственное тело, признаки математической одаренности определяют по глазам, точнее, по времени, в течение которого ребенок удерживает взгляд на каком-то объекте. Считается, что малыши будут дольше удерживать взгляд на картинке, которую сочтут интересной. В 1980 году Принтер Старки из Университета Пенсильвании показывал младенцам от 16 до 30 недель от роду экран с двумя точками, а затем другой экран, с двумя точками. Младенцы смотрели на второй экран в течение 1,9 секунды. Но когда Старки повторил опыт, показывая экран с тремя точками, младенцы смотрели на него в течение 2,5 секунды — почти на треть дольше. Старки сделал вывод, что, поскольку младенцы разглядывали картинку с тремя точками дольше, чем картинку с двумя точками, они заметили какие-то отличия, а следовательно, обладают рудиментарным представлением о числе. Подобный метод определения способности распознавания чисел на основании продолжительности отрезка времени, в течение которого взгляд фиксируется на картинке, сегодня стал стандартным. В 2000 году Элизабет Спелке из Гарварда показала, что шестимесячные дети могут заметить различие между 8 и 16 точками, а в 2005 году — что они способны различать 16 и 32 точки.
Похожие исследования продемонстрировали, что младенцы обладают и арифметическими навыками. В 1992 году Кэрин Винн из Университета Аризоны провела такой эксперимент. Она сажала пятимесячного младенца перед небольшим столиком. Взрослый клал на столик игрушечного Микки Мауса, а затем ставил экран, чтобы скрыть его. Потом взрослый клал перед экраном второго Микки Мауса, после чего экран убирали, так что становились видны обе игрушки. В другой раз Винн делала все то же самое, но только после того, как экран убирали, обнаруживалось неправильное число игрушек: или всего одна, или три. В случае, когда в конце на столике оказывались одна или три игрушки, ребенок рассматривал их дольше, чем когда их оказывалось две. Это означало, что ребенок удивлен неправильным числом. Дети понимают, заключает Винн, что одна игрушка плюс еще одна игрушка равно двум игрушкам.
Эксперимент, аналогичный эксперименту с Микки Маусом, проводили с разными игрушками, например с Элмо и Эрни, персонажами «Улицы Сезам». Элмо сажали на столик. Опускался экран. Затем позади экрана клали второго Элмо или Эрни. Экран убирали. Иногда на столике оказывались два Элмо, иногда Элмо и Эрни, а иногда один только Элмо или один Эрни. Дети рассматривали игрушки дольше, когда оставалась только одна кукла, чем когда оставались две неправильные куклы. Другими словами, арифметическая невозможность равенства 1 + 1 = 1 беспокоила их гораздо сильнее, чем превращение Элмо в Эрни. По-видимому, знания детей о законах математических гораздо глубже, чем знания о законах физических.
Швейцарский психолог Жан Пиаже (1896–1980) утверждал, что младенцы строят восприятие чисел медленно, через опыт, так что нет смысла обучать арифметике детей младше шести или семи лет. Эта точка зрения оказала влияние на поколения учителей, которые нередко предпочитали, чтобы дети на занятиях просто играли в кубики, чем знакомились с формальной математикой. Сейчас взгляды Пиаже считаются устаревшими. В наше время дети усваивают арабские цифры и учатся решать примеры уже в самых младших классах.
* * *
Эксперименты с точками играют ключевую роль и в исследованиях числовой когнитивности взрослых. В классическом опыте испытуемому показывают точки на экране и спрашивают, сколько он их видит. В случае одной, двух или трех точек ответ всегда следует практически немедленно. Когда же точек четыре, ответ занимает существенно больше времени, и еще больше — если точек пять.
И что же? — спросите вы. Возможно, этим скорее всего объясняется, почему в ряде культур числительные для 1, 2 и 3 содержат одну, две и три линии, тогда как число 4 не представляется четырьмя линиями. Когда имеется три или меньшее число линии, мы можем немедленно сказать, сколько их, но, когда их четыре, нашему мозгу задается слишком серьезная задача. Китайские иероглифы для чисел от 1 до 4 имеют вид,, и. Древние индийские числительные выглядели как,, и. (Если соединить здесь кое-какие линии, то будет видно, как они превращаются в современные 1, 2, 3 и 4.)