litbaza книги онлайнДомашняяВеличайшие математические задачи - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 62 63 64 65 66 67 ... 100
Перейти на страницу:

А если за поездкой на автобусе № 1 последует поездка на автобусе № −1? Нам хотелось бы, чтобы в ответе стояла поездка № 0, но это не так. Автобус в этом случае проезжает весь путь сначала против часовой стрелки, а потом — обратно. Это далеко не то же самое, что провести все время поездки в стоящем на остановке автобусе. Поэтому 1 + (−1), т. е. 1−1, не равно 0. На помощь опять же приходит гомотопия. Комбинация автобусов 1 и −1 в целом гомотопна поездке на автобусе 0. Чтобы понять, почему, представьте, что муравей следует по суммарному маршруту автобусов 1 и −1 на автомобиле, но, чуть-чуть не доехав до остановки, разворачивается и едет назад. Такая поездка очень близка к двойной поездке на автобусе: пропущен всего лишь крохотный кусочек маршрута. Таким образом, первоначальное двойное путешествие непрерывно уменьшилось и превратилось в немного более короткую поездку на машине. Теперь муравей может снова чуть-чуть укоротить поездку, повернув назад чуть раньше. Он может таким образом укорачивать поездку, разворачивая автомобиль все раньше и раньше, пока не окажется просто сидящим на остановке. Процесс сжимания поездки — тоже гомотопия. Она показывает, что поездка 1 плюс поездка −1 гомотопна поездке на автобусе № 0. Иными словами, 1 + (−1) = 0 для гомотопических классов поездок.

Теперь любой алгебраист без труда сможет доказать, что поездка на автобусе любого маршрута плюс вторая поездка на каком-нибудь автобусе гомотопна поездке на автобусе, номер которого получается сложением двух автобусных номеров. Это верно для положительных автобусов, для отрицательных автобусов и для автобуса № 0. Так что если мы складываем поездки — или, вернее, гомотопические классы поездок, — то получаем группу. Более того, очень знакомую группу. Ее элементами являются целые числа (номера автобусов), а ее операцией — сложение. Такая группа традиционно обозначается символом Z от немецкого слова Zahl (“целый”).

Гораздо труднее, но все же можно доказать, что в кольцевой вселенной любая кольцевая автомобильная поездка — даже если она предусматривает множество возвратов, отступлений или метаний взад-вперед на одном и том же участке дороги — гомотопична одной из стандартных автобусных поездок. Более того, автобусные поездки с разными номерами не гомотопичны. Доказательство требует некоторых теоретических познаний. Его основа — гауссов порядок кривой, или число вращения. Это число полных обходов окружности против часовой стрелки, которое совершает муравей за всю поездку{36}, и это номер маршрута, которому гомотопична ваша конкретная поездка.

Если заполнить все пробелы и расставить все точки над i, это описание доказывает, что фундаментальная группа окружности совпадает с группой целых чисел Z по операции сложения. Чтобы складывать поездки, нужно просто складывать соответствующие им числа вращения. При помощи этого топологического инварианта муравей может отличить свою кольцевую вселенную от, скажем, бесконечной прямой линии. На прямой любая поездка, как ни мечись, в какой-то момент должна достичь максимально удаленной от дома точки. Тогда мы можем непрерывно сжать поездку, постепенно уменьшая все расстояния от дома в одной и той же пропорции — сначала до 99 %, затем до 98 % и т. д. Поэтому на прямой любая поездка гомотопна нулю: можно просто остаться дома. Фундаментальная группа прямой содержит только один элемент: 0. Ее алгебраические свойства тривиальны: 0 + 0 = 0, и называется она тривиальной группой. А поскольку тривиальная группа не совпадает с группой целых чисел, муравей может понять, живет ли он на прямой или на окружности.

Как я уже говорил, существуют и другие методы, но именно так муравей может заметить разницу при помощи фундаментальной группы Пуанкаре.

А теперь предположим, что наш муравей живет на поверхности и это опять же вся его вселенная. Он не может отойти в сторону и посмотреть, какая именно поверхность является его домом. Может ли он разобраться в топологии своей вселенной? В частности, сможет ли он различить сферу и тор? Ответ по-прежнему «да», а метод тот же, при помощи которого мы исследовали вселенную-окружность: сесть в автобус и совершать круговые поездки, которые начинаются и заканчиваются в одной точке — дома. Чтобы сложить такие поездки, их нужно проделать по очереди — одну за другой. Нулевая поездка — это остаться дома; поездка с обратным знаком — это точно такая же поездка в противоположном направлении. Работая с гомотопическими классами поездок, мы получим группу. Это фундаментальная группа поверхности. По сравнению с вселенной-окружностью здесь куда больше свободы в выборе маршрутов поездок и непрерывном преобразовании их в другие поездки; тем не менее основная идея та же.

Фундаментальная группа здесь тоже является топологическим инвариантом, и муравей может воспользоваться ею, чтобы выяснить, живет ли он на сфере или на торе. Если его вселенная — сфера, то любая поездка, совершенная муравьем, может быть постепенно преобразована в нулевую поездку — пребывание дома. Однако в случае, если вселенная — тор, это не так. Некоторые поездки могут быть преобразованы в нуль, но с поездкой, которая хотя бы раз обойдет вокруг центрального отверстия (см. рис. 39 слева), ничего подобного проделать нельзя. Это утверждение нуждается в доказательстве, но это не проблема. На торе тоже есть стандартные поездки, но теперь номера автобусов представляют собой пары целых чисел (m, n). Первое число m указывает, сколько раз маршрут проходит сквозь центральное отверстие. Второе число n указывает, сколько раз маршрут обвивается вокруг тора. На рис. 39 справа показан маршрут (5, 2), который пять раз проходит сквозь отверстие и дважды обвивается вокруг тора. Чтобы сложить поездки, нужно сложить соответствующие числа маршрутов, к примеру: (3, 6) + (2, 4) = (5, 10). Фундаментальная группа тора — группа пар целых чисел.

Величайшие математические задачи

Любое топологическое пространство имеет фундаментальную группу, определенную в точности так же, с использованием поездок — или, точнее, петель, — которые начинаются и заканчиваются в одной точке. Пуанкаре придумал фундаментальную группу, чтобы доказать, что его додекаэдрическое пространство не является трехмерной сферой, хотя и имеет те же гомологические инварианты. Его первоначальный метод прекрасно приспособлен к вычислению фундаментальной группы. Более современный метод «скручивания и склеивания» приспособлен к нему еще лучше. Ответом оказывается группа из 120 элементов, связанная с додекаэдром. А вот фундаментальная группа трехмерной сферы, напротив, состоит лишь из одного элемента: нулевой петли. Так что додекаэдрическое пространство топологически не эквивалентно сфере, несмотря на одинаковые группы гомологий, и Пуанкаре доказал, что утверждение, сделанное им в 1900 г., ошибочно.

1 ... 59 60 61 62 63 64 65 66 67 ... 100
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?