Шрифт:
Интервал:
Закладка:
Как и общественные бактерии, амебы страдают от социального паразитизма. У них тоже встречаются штаммы обманщиков и нахлебников. Эксперименты показали, что вероятность развития устойчивости к обманщикам в результате случайных мутаций у диктиостелиума тоже довольно высока, как и у миксококков (Khare et al., 2009).
Жизненный цикл и социальный паразитизм у Dictyostelium.Темным и светлым обозначены два штамма (разновидности) амеб – «обманщики» и «честные». а – при избытке пищи амебы живут поодиночке, растут и размножаются бесполым путем (делением); половое размножение у них тоже иногда происходит, но на схеме оно не показано. б – в – при недостатке пищи амебы собираются в большие скопления. г – в результате образуются многоклеточные агрегаты длиной в несколько миллиметров, которые могут некоторое время ползать на манер слизней; их так и называют – slugs. д – ж – в конце концов многоклеточный агрегат превращается в «плодовое тело» на ножке; при этом около 20 % клеток жертвуют собой, образуя ножку, а 80 % превращаются в споры и получают шанс продолжить свой род. Видно, что темные клетки («обманщики») захватили почти все лучшие места в плодовом теле и превратились в споры, предоставив всю неблагодарную работу по созданию ножки светлым клеткам («честным»). По рисунку из Kessin, 2000.
В природе идет постоянная борьба между альтруистами и обманщиками. Поэтому геномы таких организмов «настроены» естественным отбором так, что случайные мутации с большой вероятностью могут приводить к появлению защиты от той или иной разновидности обманщиков. Скорее всего, у них есть специализированные молекулярные системы «обмана» (помогающие проникать в чужие плодовые тела, не строя своих) и системы «защиты от обмана» (позволяющие опознать обманщика и не пустить его в плодовое тело). Между этими системами идет эволюционная гонка вооружений. Когда у какой-то амебы возникает полезная мутация в системе обмана, такая амеба дает начало новому штамму эффективных обманщиков. Когда у другой амебы возникнет полезная мутация в системе защиты, она даст начало штамму, защищенному от новых обманщиков. И так далее. Это очень похоже на нескончаемую гонку вооружений, идущую между патогенными микробами и генами иммунной защиты.
Создается впечатление, что эволюция неоднократно «пыталась» создать из социальных бактерий или простейших, умеющих собираться в плотные скопления, многоклеточный организм, но дело почему-то не пошло дальше плазмодиев и довольно просто устроенных плодовых тел. Все по-настоящему сложные многоклеточные организмы формируются иным путем – не из множества индивидуальных клеток со своими особенными геномами, а из потомков одной-единственной клетки. Это гарантирует генетическую идентичность всех клеток организма. Величина R становится равной единице, что создает идеальные условия для родственного отбора.
Некоторые социальные системы, основанные на альтруизме и при этом вроде бы не защищенные от социальных паразитов, ухитряются выживать за счет разных маленьких хитростей. Недостойных, прямо скажем, высокого звания альтруиста.
Например, в популяциях дрожжей одни особи ведут себя как альтруисты: они производят фермент инвертазу, расщепляющий сахарозу на легко усваиваемые моносахариды – глюкозу и фруктозу. Дрожжи могут поглощать и не-расщепленную сахарозу, но моносахариды усваиваются ими легче (то есть используются более эффективно). Некоторые дрожжевые клетки, однако, не производят инвертазу, хотя с удовольствием поедают глюкозу, добытую чужими трудами. Ведь инвертаза расщепляет сахарозу не внутри клетки, а снаружи, поэтому получившиеся моносахариды становятся доступны не только той клетке, которая произвела фермент, но и всем окружающим.
Дрожжи в последние годы стали излюбленным объектом ученых, занимающихся поведением социальных систем (на рисунке видны круглые шрамы, остающиеся на месте отпочковавшихся дочерних клеток).
Теоретически это должно было бы приводить к полному вытеснению альтруистов эгоистами. Но в реальности численность альтруистов не падает ниже определенного уровня. Дело в том, что альтруизм дрожжей при ближайшем рассмотрении оказался не совсем бескорыстным: дрожжи-альтруисты помогают всем окружающим, но 1% произведенной ими глюкозы они все-таки берут себе сразу, в обход общего котла. За счет этого однопроцентного выигрыша они, как выяснилось, могут мирно сосуществовать с эгоистами. Когда численность «эгоистов» достигает определенного (достаточно высокого) уровня, количество доступной глюкозы в популяции снижается настолько, что быть «альтруистом» становится просто-напросто выгоднее, чем эгоистом. Альтруисты начинают размножаться чуть быстрее эгоистов, и их количественное соотношение стабилизируется. Начинает работать так называемый частотно-зависимый отбор (он действует, когда приспособленность генотипа – в данном случае генотипа «альтруистов» – растет по мере снижения его частоты: ген выгоден, пока редок).
Но если альтруизм выгоднее эгоизма, то это уже как будто и не совсем альтруизм. Да и можно ли на таких мелких хитростях вроде жевания печенья под подушкой построить серьезную, сложную кооперативную систему?
Обманщики могут быть полезны для общества?
До недавних пор считалось, что положение, складывающееся в смешанной популяции дрожжей-альтруистов (производящих фермент инвертазу) и дрожжей-эгоистов (которые фермента не производят и живут на готовеньком) соответствует классической ситуации из теории игр, которая называется «игра в сугроб». Лишь в 2010 году выяснилось, что дрожжи на самом деле «в сугроб» не играют. Все оказалось сложнее и интереснее (MacLean et al., 2010).
В классической «игре в сугроб» условия такие. Два игрока должны решить общую проблему (например, расчистить снежный завал на дороге или расщепить сахарозу). Если она будет решена, оба получат выигрыш b (смогут ехать дальше или получат порцию глюкозы). Чтобы проблему решить, необходимо заплатить некую цену с (например, поработать лопатой или потратить энергию на производство инвертазы).
Если кооператор играет против другого кооператора, они решают проблему сообща и для каждого из них итоговый выигрыш будет равен b – с/2. Если кооператор играет против обманщика, то кооператор делает один всю работу и в итоге получает b – с, а обманщику выигрыш b достается даром. Два обманщика, играя друг против друга, ничего не делают и оба остаются с носом.
Предположение о том, что дрожжи «играют в сугроб», позволило объяснить, почему в популяциях дрожжей обманщики не вытесняют кооператоров. Когда кооператоров остается слишком мало, обманщикам все чаще приходится играть друг против друга, и в итоге их стратегия становится (в среднем) менее выгодной, чем стратегия кооператоров.
Однако из модели «игры в сугроб» вытекает проверяемое следствие, которое, как выяснилось, не подтверждается фактами. Состоит оно в следующем. Если дрожжи действительно «играют в сугроб», то максимальный общий выигрыш (для всей популяции «игроков» в целом) должен достигаться при полном отсутствии обманщиков в коллективе. В модели «игры в сугроб», как и в большинстве других классических моделей социальных систем, кооператоры всегда приносят коллективу только пользу, а обманщики – один сплошной вред. Иными