litbaza книги онлайнРазная литератураКонец индивидуума. Путешествие философа в страну искусственного интеллекта - Гаспар Кёниг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 86
Перейти на страницу:
там не нашел, а потом в прачечную, где хозяйка придумала гениальный и совершенно нью-йоркский выход – просто зашить рукава. Мы поговорили о Румынии, откуда она родом и где живет семья моей жены. Я тепло обнял ее на прощание, а потом отправился в IBM в более или менее приличном виде, радуясь столь хитрому решению. Пусть подкладка и не в порядке, но форму я, по крайней мере, сохранил.

IBM – гигант программного обеспечения, прославившийся тем, что его суперкомпьютер Deep Blue победил Гарри Каспарова. Watson – последний продукт их программы ИИ, способный выиграть в общекультурной телевикторине Jeopardy![14]. Сегодня программисты IBM готовят свою машину к риторическим сражениям с людьми. Причем Watson внедряется и в виде коммерческих продуктов, которые продаются разным компаниям, желающим улучшить обработку данных. Он использует несколько слоев анализа: публичный ИИ, обрабатывающий сетевую информацию (например, из «Википедии»), специфичный для каждой конкретной области ИИ (например, финансов), затем частный и специфичный для каждого клиента ИИ (например, для компании J.P. Morgan). Подобная комбинация позволяет производить все более экспертный и независимый ИИ, способный накапливать и синтезировать знания и опыт, приобретенные в определенной сфере деятельности. Например, Watson управляет переносом знаний о нефтяных платформах, отвечая на технические вопросы новичков. Вы спрашиваете, каким должен быть максимальный вес вертолета при приземлении? Нет нужды обращаться к более опытным коллегам, вам ответит наш компьютер![15]

Все эти практические примеры, утопающие в многословии коммерческого пиара, не слишком помогли мне понять природу подобных технологических достижений. Но, наконец, появилась мадонна ИИ – Франческа, известная специалистка по компьютерным наукам из Падуанского университета, сегодня она работает в исследовательском подразделении IBM. Может быть, ее объяснения показались мне настолько прозрачными лишь потому, что Франческа – рыжая элегантная итальянка, выгодно отличающаяся своей человечностью в этом мире нердов – ботаников, помешанных на технологиях? Так или иначе, краткий курс, прочитанный мне в конференц-зале IBM, где Франческа по старинке писала своим округлым почерком на белой доске, позволил четко организовать в уме все те загадочные понятия, которые я долго собирал в чтении и обсуждениях. Наконец-то все стало обретать смысл… А потому я поделюсь здесь этим безупречным уроком, который специалистам, возможно, покажется слишком упрощенным, но для меня в моем долгом странствии стал непреложным ориентиром. Кстати, нижеследующие строки покажутся менее сухими, если вы будете читать их с итальянским акцентом.

Вначале было логическое правило. Термин «искусственный интеллект» существует с 1950‐х годов[16] и в той или иной степени смешивается с понятием информатики как науки. Цель его проста: создать неорганическую копию человеческого интеллекта. За свою не слишком долгую историю ИИ пережил немало приключений и несколько «зим», когда его считали умершим[17]. Долгое время он мог действовать только по правилам, созданным людьми, то есть по пресловутым алгоритмам, которые всегда не более чем сложные руководства. Всем известный Deep Blue, выигравший в конце концов у Каспарова в шахматы в 1997 году, использовал брутфорс, то есть перебирал миллионы возможных комбинаций за несколько секунд. Такой ИИ представляет ту или иную ситуацию в символьном виде, а затем строит рассуждение, которое может завершиться тем или иным решением. По сути, это способ индустриализации логических умозаключений, идеально подходящий для таких закрытых систем, как шахматы. Сегодня такой ИИ называют GOFAI, good old-fashioned AI, «старый добрый ИИ».

В своем минимальном варианте ИИ сводится, таким образом, к сумме наших знаний в области информатики. В максимальном – это сам человеческий интеллект, то есть все, что компьютерная программа пока делать не умеет; и наоборот, «как только она начинает работать, это больше не называется ИИ», – объяснял Джон Маккарти. Но между двумя этими крайностями в обыденном языке ИИ стал обозначать вполне определенную технику, а именно machine learning, машинное обучение.

Собственно, настоящий прорыв, объясняющий массовое распространение технологий ИИ и популярность этого термина, произошел в самом начале текущего столетия, когда информационные системы приобрели возможность обучаться самостоятельно, не следуя заранее установленным правилам. Эта цель была поставлена с самого начала информатики, однако добиться удовлетворительных результатов не удавалось. Успешное решение этой задачи объясняют три фактора: внезапно возникшее благодаря интернету изобилие данных, стремительное увеличение мощности компьютеров и открытие заново «нейронных сетей», то есть определенного способа конструирования информационных связей, при котором точки обработки данных в значительной мере независимы друг от друга, напоминая этим в какой-то степени нейроны нашего мозга.

Машинное обучение, в свою очередь, подразделяется на несколько техник в соответствии с уровнем вмешательства человека: «обучение с учителем» (supervised learning, под контролем программиста), «обучение с подкреплением» (reinforcement learning, когда машина «вознаграждается» в зависимости от качества ее результатов, а потому учится на собственных ошибках, что позволяет создавать базы систем «рекомендаций» книг, фильмов и т. п.) и «обучение без учителя» (unsupervised learning, когда машина в целом предоставлена сама себе). Что же касается «глубокого обучения» (deep learning), то речь идет о применении нейронных сетей для реализации трех упомянутых техник. Например, для идентификации кота на изображении можно применить контролируемое глубинное обучение[18].

Общая черта всех этих методов машинного обучения состоит в том, что полученные результаты нельзя полностью объяснить. Машина поглощает значительное количество данных, как-то по-своему «переваривает» их (на этом этапе человек более или менее ее контролирует и настраивает), а потом приходит к выводу, следуя при этом траектории, которую никто не мог бы воссоздать во всех подробностях. Поэтому всегда следует помнить о компромиссе между эффективностью и прозрачностью (explainability). Некоторые выдающиеся исследователи полагают, что машинное обучение означает устаревание всех традиционных алгоритмов, основанных на явных критериях, а также человеческих экспертных знаний[19].

Теперь вернемся к нашему примеру: как дать компьютеру инструкцию распознать кота на изображении, которое состоит из миллионов пикселей? Если мы попытаемся «описать» кота, то быстро выясним, что прийти к точному определению практически невозможно. Предположим, что у кота четыре лапы, но как определить лапу? Как прямоугольную форму относительно однородного цвета, которая заканчивается звездчатой структурой? Но как в таком случае отличить лапу от куска дерева, заканчивающегося веткой? Какое среднее расстояние следует заложить между четырьмя прямоугольниками, чтобы предположить наличие кота? А что делать с котами без ног, которых двухлетний ребенок мог бы идентифицировать с первого взгляда? Нужно ли потом дать определения всего остального, что есть у кота, начиная с усов и заканчивая хвостом?

Здесь-то и вмешивается машинное обучение, которое я по примеру большинства комментаторов и в целях удобства буду далее в этой книге отождествлять с ИИ. Вместо того чтобы определять кота, программист предоставляет своему ИИ тысячи, миллионы изображений с кошками, но не дает ему никакой другой информации. Эти изображения предварительно «маркируются» людьми, которые сортируют их в зависимости от

1 ... 3 4 5 6 7 8 9 10 11 ... 86
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?