Шрифт:
Интервал:
Закладка:
Не нужно путать реальные социальные вызовы, создаваемые автоматизацией, с мифом об автономном роботе. Прежде чем заменить людей, роботы должны быть ими придуманы. Искусственный интеллект – это оптимизированная и размноженная комбинация миллионов человеческих интеллектов. Мне кажется ошибкой утверждать в стиле газетных заголовков лета 2018 года, что «один ИИ в диагностике опухолей головного мозга показал лучшие результаты, чем пятнадцать китайских врачей». Скорее следовало бы писать, что один ИИ позволил наладить беспрецедентное сотрудничество тысяч врачей, которые, опираясь на собственные знания, занимались маркированием тысяч изображений с опухолями. Разве может быть что-то удивительное или чудесное в том, что десять тысяч врачей, работая вместе, достигли лучших результатов, чем пятнадцать их коллег?
Эту интерпретацию подтвердил мне Сяовей Динг, основатель и генеральный директор VoxelCloud – стартапа с офисами в Шанхае и Лос-Анджелесе, занимающегося медицинской визуализацией. Я встретился с Сяовеем в кампусе Калифорнийского университета в Лос-Анджелесе (UCLA), где он параллельно занимается академической карьерой в области компьютерных наук. Кафе одного из самых престижных государственных университетов США похоже не столько на студенческую столовую, сколько на холл пятизвездочного отеля из красного кирпича, с изящной архитектурой и кипарисовой аллеей. Я увидел, как к моему столу подходит не безжалостный капиталист, за два года получивший около 30 миллионов долларов от крупнейших фондов венчурного капитала, которого я представлял по его резюме, а молодой, несколько неловкий человек, одетый в спортивные штаны и футболку с ярким рисунком. Все-таки я никак не могу привыкнуть к тому, что наши новые хозяева – постаревшие подростки…
Врачи отправляют в VoxelCloud медицинские сканы, снабженные описанием симптомов, а ИИ возвращает им возможный диагноз с рекомендациями по лечению. Человек в бо́льшей или меньшей мере контролирует машину, в зависимости от сложности случая. Однако VoxelCloud так или иначе должен собрать значительное число сканов, размеченных американскими или китайскими врачами, которые получают за это определенное вознаграждение (китайские врачи, по словам Сяовея, «работают быстрее и дешевле, они больше открыты технологии, но качество у них хуже»). То есть задача не в том, чтобы заменить врачей, а в том, чтобы использовать их профессиональные знания для усовершенствования процедур: «Данные по самой своей сути ограничены». ИИ довольствуется обнаружением корреляций между заболеваниями и изображениями; он воздерживается от самостоятельного определения той или иной медицинской причинной связи. В каком-то смысле он «делает грязную работу». Поэтому Сяовей не слишком ценит все эти фиктивные «соревнования» роботов и врачей, устраиваемые скорее с рекламными целями, которые вводят широкую общественность в заблуждение, скрывая от нее реальный способ работы ИИ.
Реальность и ее копия
Вот почему ИИ, как и предчувствовал наш фокусник, – иллюзия: он воспроизводит результат, а не процесс. Это первым делом и сообщил мне Ян Лекун, легенда ИИ, – он возглавлял кафедру информатики и цифровых наук в Коллеж де Франс, а сегодня руководит исследованиями ИИ в Facebook в Нью-Йорке: «нейронные сети» – это метафора, как крылья самолета – метафора крыльев птицы. Нельзя смешивать цель, к которой мы стремимся (например, мыслить или летать), с применяемыми нами методами. Иначе можно разбиться… Когда во времена «прекрасной эпохи» Клеман Адер пытался сконструировать самолет, глядя на летучую мышь, двигатель просто не смог поднять машину в воздух. Точно так же компьютер не может подражать работе мозга, в котором 80 миллиардов нейронов, причем у каждого из них по 10 тысяч синапсов. Вот почему ИИ, распознающий «кота», может воспроизвести результат концептуализации, которая разворачивается в глубинах нашей нейронной деятельности, но не сам процесс, ведь ИИ понадобятся миллионы примеров, заранее проанализированных человеческим разумом.
Ученым это различие представляется вполне тривиальным. Джерри Каплан неизменно подчеркивает его в своих лекциях и интервью. Специалист по компьютерным наукам, занимавшийся самыми разными проблемами, предприниматель, основавший много фирм, профессор и эссеист, вечно находящийся в разъездах (на этот раз я вынужден довольствоваться разговором по скайпу), он не слишком жалует адептов сингулярности и регулярно напоминает о том, что программа «симулирует мышление, не воспроизводя процесса, который происходит в человеческом разуме». Знаменитый тест Тьюринга Каплан интерпретирует не в качестве вступительного экзамена в эпоху полностью искусственного интеллекта, который было бы невозможно отличить от интеллекта человеческого, а в качестве простой игры в имитацию. Напомним, что тест Тьюринга заключается в разговоре с удаленным собеседником, когда невозможно определить, кто он – человек или компьютер. Алан Тьюринг своим тестом предвосхищает техники НЛП[23] и чат-боты[24], способные создавать иллюзию естественного общения. Однако он нигде не утверждает, что компьютер таким образом достигает уровня человеческого мышления. Главное – это то, что машина может обмануть собеседника, демонстрируя все признаки наличия интеллекта. Тьюринг, как известно, был геем, и Каплан готов даже сравнить этот мысленный эксперимент с допросами, которым в те времена все еще подвергали гомосексуалов в Англии: они должны были убедить полицию в своей сексуальной добропорядочности. В самом деле, в опубликованном в 1950 году исходном сценарии Тьюринга, еще до того как на сцену выходит машина, применяется странная перестановка ролей мужчины и женщины. То есть компьютер притворяется разумным точно так же, как мужчина притворяется женщиной, а гомосексуал – гетеросексуалом. В этой грандиозной игре зеркал достоверно известно лишь одно: существует истинное и ложное, подлинник и копия.
Конечно, можно заявить, что иллюзия смешивается с реальностью, что подражать мышлению – это и значит мыслить: в конце концов, как мы могли бы убедиться в том, что наш собеседник-человек – не компьютер в человеческой форме, или же в том, что наше собственное мышление не является запрограммированным? Этот вопрос на заре философии поставил еще Платон, когда определил софиста (в одноименном диалоге) в качестве подражателя, производящего иллюзии, отличные от самих вещей. Софист владеет наукой «кажимости», он производит копии. Но разве сами эти копии не должны считаться «реальными»? Как отличить истинное от ложного в полном, цельном мире, в котором невозможно отрицать существование того, что проявляется? «Ведь являться и казаться и вместе с тем не быть, а также говорить что-либо, что не было бы истиной, – все это и в прежнее время вызывало много недоумений, и теперь тоже»[25]. Этот ответ Платона навсегда определит западную мысль: чтобы мыслить ложное, нужно допустить небытие, то есть нарушить запрет учителя Платона – Парменида, согласно которому «бытие есть» (тавтология, ранее считавшаяся безупречным утверждением). Это платоновское отцеубийство, позволившее извлечь понятие истины из монолита Парменида, неподвижного и невыразимого, открывает возможность противопоставить исследование истины торговле иллюзией. Мысль приходит в движение. Так копия находит место между бытием и небытием, между неопровержимым и непроизносимым: это то, чего нет. Ложная речь возникает, следовательно,