litbaza книги онлайнДомашняяСтруктура реальности. Наука параллельных вселенных - Дэвид Дойч

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 69 70 71 72 73 74 75 76 77 ... 110
Перейти на страницу:

Занятно, но идея Платона о том, что физическая реальность состоит из несовершенных копий абстракций, сегодня кажется чрезмерно асимметричной позицией. Как и Платон, мы по-прежнему изучаем абстракции ради их самих. Однако в постгалилеевской науке и в теории виртуальной реальности мы также рассматриваем абстракции как средство понимания реальных или искусственных физических сущностей, и в этом контексте мы считаем само собой разумеющимся, что абстракции почти всегда являются приближениями к истинной физической ситуации. Таким образом, несмотря на то, что Платон считал земные круги, нарисованные на песке, приближениями к истинным, математическим кругам, современный физик посчитал бы математический круг плохим приближением истинной формы планетарных орбит, атомов и других физических объектов.

Учитывая, что всегда будет существовать возможность выхода из строя генератора виртуальной реальности или его пользовательского интерфейса, можно ли действительно говорить о том, что евклидов круг воспроизведён в виртуальной реальности в совершенстве в соответствии с нормами математической строгости? Можно. Никто не утверждает, что сама математика свободна от такого рода неопределённостей. Математики могут ошибиться в вычислении, исказить аксиомы, сделать опечатки при изложении своей собственной работы и т. д. Однако можно утверждать, что, за исключением грубых ошибок, их выводы совершенно надёжны. Точно так же генератор виртуальной реальности, работая должным образом в соответствии со своими техническими характеристиками, воссоздаёт в совершенстве идеальный евклидов круг.

Сходным образом можно было бы возразить, что мы никогда не сможем точно сказать, как поведёт себя генератор виртуальной реальности под управлением данной программы, потому что это зависит от функционирования машины и, в конечном счёте, от законов физики. Поскольку невозможно с полной уверенностью знать законы физики, нельзя и достоверно знать, что машина безупречно воспроизводит геометрию Евклида. Но опять-таки никто не отрицает, что непредвиденные физические явления — станут ли они следствием неизвестных законов физики или просто заболевания мозга или хитроумных чернил — могут сбить математика с правильного пути. Но если законы физики находятся в соответствующих отношениях (а мы полагаем так), то генератор виртуальной реальности может в совершенстве делать свою работу, несмотря на то что у нас не будет в этом полной уверенности. Здесь следует проявить внимательность, чтобы не перепутать два вопроса: можем ли мы знать, что машина виртуальной реальности воссоздаёт совершенный круг? И действительно ли она воссоздаёт его? Мы не можем знать об этом с уверенностью, но это ни на йоту не уменьшает совершенство круга, который фактически воссоздаёт машина. Я очень скоро вернусь к этому важному различию — между совершенным знанием (достоверностью) относительно какой-либо сущности, и «совершенством» самой сущности.

Допустим, что мы намеренно модифицируем программу геометрии Евклида так, что генератор виртуальной реальности по-прежнему будет воссоздавать круги достаточно хорошо, но всё же не совершенно. Разве мы не смогли бы узнать ничего о совершенных кругах, воспринимая эту несовершенную картину? Это полностью зависело бы от того, знаем ли мы, в каких отношениях изменена программа, или нет. Если бы мы это знали, то могли бы с уверенностью решить (за исключением грубых ошибок и т. д.), какие аспекты ощущений, полученных нами внутри машины, представляют совершенные круги точно, а какие неточно. И в этом случае знание, которое мы там приобрели, было бы столь же надёжным, как и любое знание, приобретённое с использованием правильной программы.

Воображая себе круги, мы осуществляем воспроизведение почти такого же рода в виртуальной реальности в собственном мозге. Причина того, почему этот способ размышления об идеальных кругах не бесполезен, состоит в том, что мы можем создать точные теории о том, какими свойствами совершенных кругов обладают воображаемые нами круги, а какими нет.

Используя совершенное воспроизведение в виртуальной реальности, мы могли бы увидеть шесть идентичных кругов, которые касаются кромки седьмого идентичного им круга в плоскости, не перекрывая друг друга. Это впечатление при подобных обстоятельствах было бы эквивалентно точному доказательству возможности такой ситуации, поскольку геометрические свойства воссозданных форм были бы абсолютно идентичны геометрическим свойствам абстрактных форм. Но такой вид «практического» взаимодействия с совершенными формами не способен дать всестороннее знание геометрии Евклида. Большая часть интересных теорем относится не к одной геометрической форме, а к бесконечным классам геометрических форм. Например, сумма углов любого евклидова треугольника равна 180°. Мы можем измерить конкретные треугольники с идеальной точностью в виртуальной реальности, но даже в виртуальной реальности нельзя измерить все треугольники, а, значит, и проверить теорему.

Как же её проверить? Мы её доказываем. Традиционно доказательство определяют как последовательность утверждений, удовлетворяющих самоочевидным правилам вывода, но чему физически эквивалентен процесс доказательства? Чтобы доказать утверждение сразу о бесконечно большом количестве треугольников, мы исследуем определённые физические объекты (в данном случае символы), которые обладают общими свойствами со всем классом треугольников. Например, когда при надлежащих обстоятельствах мы наблюдаем символы «ΔАВС = ΔDEF» (т. е. «треугольник АВС конгруэнтен треугольнику DEF»), мы делаем вывод, что все треугольники из некоторого класса, который мы каким-то образом определили, всегда имеют ту же самую форму, что и соответствующие им треугольники из другого класса, определённого иначе. «Надлежащие обстоятельства», которые придают этому заключению статус доказательства, заключаются, говоря языком физики, в том, что символы появляются на странице под другими символами (часть из которых выражает аксиомы геометрии Евклида), и порядок появления символов соответствует определённым правилам, а именно — правилам вывода.

Но какими правилами вывода нам следует пользоваться? Это всё равно что спросить, как следует запрограммировать генератор виртуальной реальности для воспроизведения мира евклидовой геометрии. Ответ в том, что нужно использовать те правила вывода, которые, в соответствии с нашим наилучшим пониманием, заставят наши символы вести себя в соответствующих отношениях как абстрактные сущности, которые они обозначают. Как нам удостовериться, что они ведут себя именно так? Это невозможно. Предположим, что некоторые критики возражают против наших правил вывода, считая, что наши символы будут вести себя отлично от абстрактных сущностей. Мы не можем ни взывать к авторитету Аристотеля или Платона, ни доказать, что наши правила вывода безошибочны (в отличие от теоремы Гёделя, это привело бы к бесконечному регрессу, ибо сначала нам пришлось бы доказать обоснованность самого используемого нами метода доказательства). Не можем мы и надменно сказать критикам, что у них что-то не в порядке с интуицией, лишь опираясь на нашу интуицию, которая говорит, что символы будут копировать абстрактные сущности в совершенстве. Всё, что мы можем сделать, — это объяснить. Следует объяснить, почему мы думаем, что при определённых обстоятельствах символы будут вести себя желаемым образом в соответствии с предложенными нами правилами. А критики могут объяснить, почему они предпочитают теорию, конкурирующую с нашей. Несогласие относительно двух таких теорий — это отчасти расхождение во мнениях относительно наблюдаемого поведения физических объектов. С такого рода расхождениями можно работать обычными научными методами. Иногда противоречия легко разрешимы, а иногда — нет. Другой причиной подобного расхождения может стать концептуальный конфликт относительно природы самих абстрактных сущностей. И вновь дело за конкурирующими объяснениями, на этот раз объяснениями не физических объектов, а абстракций. Либо мы придём к общему пониманию со своими критиками, либо согласимся, что говорим о двух различных абстрактных объектах, либо вообще не придём к согласию. Нет никаких гарантий. Таким образом, в противоположность традиционному убеждению, споры в математике не всегда можно разрешить с помощью чисто процедурных средств.

1 ... 69 70 71 72 73 74 75 76 77 ... 110
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?