Шрифт:
Интервал:
Закладка:
Рис. Тритон.
Наблюдения с Земли позволили определить параметры орбиты Тритона, и выяснилось необычное обстоятельство: он единственный из крупных спутников обращается вокруг планеты в обратном направлении. Этот факт породил немало гипотез о происхождении как самого Тритона, так и похожей на него планеты Плутон, орбита которой заходит внутрь орбиты Нептуна. В 1977 г. спектральный анализ отраженного Тритоном света показал, что у спутника есть разреженная атмосфера, содержащая метан, а на поверхности, возможно, лежит метановый иней. Но все же изучение этого далекого мирка продвигалось медленно. Например, еще в 1970-е гг. некоторые исследователи оценивали радиус Тритона в 3000 км., т.е. преувеличивали его более чем вдвое.
Усилия наблюдателей были направлены на поиск новых спутников Нептуна. Но удача больше не улыбнулась ни Ласселлу, ни Уильяму Кристи (1845—1922), ни Джону Шеберле (1853—1924). И только Койпер в 1949 г. на фотопластинках, снятых на обсерватории Мак-Дональд (США), заметил слабую звездочку 19,5m, следующую по небосклону вслед за Нептуном. Новый спутник назвали Нереидой. Трудно найти более несхожую пару: Тритон обращается по круговой орбите, а Нереида то приближается к планете на 1,4 млн. км., то удаляется почти на 10 млн. км. Вытянутые орбиты характерны для небольших спутников планет-гигантов, скорее всего, захваченных ими из пояса астероидов. Но диаметр Нереиды (340 км.) слишком велик для рядового астероида. Впрочем, не исключено, что за орбитой Нептуна — в Поясе Койпера — немало таких тел.
Новую страницу в изучении семейства Нептуна открыл «Вояджер-2», обнаруживший шесть новых спутников: Наяда, Таласса, Деспина, Галатея, Ларисса и Протей. Лишь последний превышает размером Нереиду; остальные спутники — это малыши поперечником 50—200 км. Несмотря на радость обнаружения новых объектов, наибольший интерес у планетологов вызвали изображения старого знакомца — Тритона. Оказалось, что температура его поверхности всего 38 К, но при этом существует тончайшая азотная атмосфера, в десятки тысяч раз уступающая по плотности земной. На розоватой поверхности Тритона обнаружились любопытные геологические детали, включая крупные разломы, полярную шапку и даже мощные метаново-азотные гейзеры. В разреженной атмосфере Тритона были замечены облака, а еще выше обнаружена ионосфера и слабые полярные сияния. Ну чем не планета! Жаль, что Нептун находится так далеко, и до него не скоро доберутся новые космические аппараты.
Спутники Плутона
Хотя Плутон был переведен недавно из разряда классических планет в группу планет-карликов, он не стал от этого менее интересным для астрономов. Скорее наоборот: как далекий объект, трудный для изучения, он постоянно бросает вызов опытным наблюдателям.
Спутник Плутона Харон был открыт случайно. В июне 1978 г. Джеймс Кристи из Морской обсерватории США, просматривая свежие фотопластинки, полученные на 155-см астрометрическом телескопе (Флагстафф, шт. Аризона), заметил, что изображение Плутона на них не совсем симметричное: круглая «клякса» имеет чуть заметный выступ. Кристи и его коллега Роберт Харрингтон пересмотрели пластинки прошлых лет, вплоть до 1965 г. и обнаружили, что на некоторых из них, снятых при особенно высокой четкости изображений, также заметен выступ, причем от ночи к ночи он смещается. Сомнения исчезли — это спутник!
Так еще раз подтвердилась старая истина: «Увидеть можно лишь то, что ты готов увидеть». Похоже, что астрономы Флагстаффа постоянно готовы видеть все новое, связанное с Плутоном: ведь открытие спутника произошло всего в шести километрах от обсерватории Ловелла, где в 1930 г. открыли саму планету.
Кристи предложил назвать спутник Хароном: согласно греческой мифологии, так звали лодочника, перевозившего души умерших людей через реку Стикс в Аид, царство Плутона. Все попытки отыскать другие спутники Плутона в течение четверти века оставались безрезультатными. Но и находка одного Харона чрезвычайно обрадовала астрономов. Были использованы все возможности для детального изучения этой странной парочки. Определив орбитальный период Харона (6,387 сут.) и его расстояние от центра планеты (19600 км.), наконец-то удалось вычислить массу Плутона (конечно, в сумме с Хароном): их общая масса оказалась неправдоподобно малой, в 400 раз меньше массы Земли. Систему Плутон-Харон с еще большим правом, чем систему Земля-Луна, можно назвать двойной планетой. Ведь Харон всего лишь в 8 раз уступает по массе Плутону, тогда как Земля массивнее Луны в 81 раз. К тому же Харон в 20 раз ближе к Плутону, чем Луна к Земле.
Удача этого открытия состоит еще в том, что орбита спутника в те годы оказалась направлена своей плоскостью почти точно на Землю: с 1988 по 1991 гг. наблюдались взаимные затмения Плутона и Харона, которые позволили определить их диаметры и даже выявить крупные пятна на поверхности. Следующая такая удача представится только в начале XXII века!
По результатам затмений диаметр Харона был оценен в 1200 км., лишь вдвое меньше диаметра Плутона (2300 км.). При этом их средние плотности оказались близки — около 2 г/см3. Скорее всего, недра этих микро-планет состоят из льда и силикатных пород. Температура поверхности Харона не превышает 50-60 К, поэтому там могут конденсироваться многие летучие соединения. Еще недавно этим ограничивались наши знания о Хароне, но в 2005 г. удалось исследовать его более детально. Помогло редкое событие — покрытие звезды.
Любопытно, что предсказал это событие любитель астрономии: в 2004 г. австралиец Дейв Геральд рассчитал, что 5 июля 2005 г. Харон должен будет закрыть собой слабенькую звезду 15m в созвездии Змеи. Поскольку блеск самой пары Плутон-Харон составляет около 14m, то «временное отключение» звезды могло быть легко замечено в телескоп подходящего размера. Расчеты показали, что покрытие должно быть видно из некоторых мест в Южной Америке, включая гору Серро-Паранал на севере пустыни Атакама (Чили), где расположен крупнейший комплекс 8-метровых телескопов VLT (Very Large Telescope) Европейской южной обсерватории.
Покрытия звезд давно уже помогают астрономам измерять размеры малых или очень далеких тел, фигуры которых в телескоп неразличимы. Зная скорость движения тела и измерив длительность затмения звезды, легко можно вычислить размер тени, который в точности равен размеру самого тела, поскольку от звезды приходит практически параллельный пучок света. Кроме того, в моменты начала и конца затмения, по тому, насколько резко пропадает или появляется свет звезды, можно выявить наличие у затмевающего тела атмосферы, причем даже весьма разреженной.
К сожалению, угловой диаметр Харона на небе очень мал — всего 0,055", что соответствует видимому размеру двухрублевой монеты с расстояния 100 км. Поэтому покрытия Хароном звезд наблюдаются очень редко и точно рассчитать траекторию его тени нелегко. Но в последние годы ситуация стала лучше: созданы большие телескопы, позволяющие наблюдать слабые звезды. Звездные каталоги стали точнее, что повышает точность прогноза покрытий. Наконец, система Плутон-Харон в настоящее время видна на фоне богатого звездами Млечного Пути, что увеличивает шансы покрытий. В июле 2005 г. покрытие наблюдалось при помощи огромного телескопа системы VLT, оснащенного адаптивной оптикой, а также другими телескопами в Чили и Аргентине.