litbaza книги онлайнДомашняяЖизнь замечательных веществ - Аркадий Курамшин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 69 70 71 72 73 74 75 76 77 78
Перейти на страницу:

Исследователи резонно предполагают, что для получения веществ, в котором будет достигаться рекордное значение координационного числа для одного из атомов, необходимо, чтобы в контакте находились атомы химических элементов с максимально различающимися атомными (или ионными) радиусами. Один из подходящих вариантов – атомы цезия и фтора, разбежавшиеся в разные углы Периодической системы. Цезий расположен в нижнем левом углу таблицы Менделеева и представляет собой типичный металл, элемент с максимально низкой электроотрицательностью (среди обладающих устойчивыми изотопами химических элементов), а типичный неметалл с наибольшим значением электроотрицательности фтор – в верхнем правом углу. Атомный радиус цезия составляет 2,49 Ангстрем, фтора – 1,63 Ангстрем, и исследователи полагали, что при получении соединений, в которых фтор и цезий будут сближены, произойдёт что-то необычное. Предположение подтвердилось.

Жизнь замечательных веществ

Химики из группы Клауса-Ричарда Поршке (Klaus-Richard Pörschke) смогли получить вещество, в котором центральный ион цезия координирован с шестнадцатью атомами фтора – для атома или иона щелочного металла такое координационное число является рекордным (J. Am. Chem. Soc., 2016, 138 (30), P. 9444–9451; DOI: 10.1021/jacs.6b02590).

Примеров структур с координационным числом большим, чем 12, мало, поскольку получение таких соединений сопряжено с целым рядом экспериментальных сложностей, обусловленных ограниченным пространством вокруг центрального атома и возникающим между лигандами электростатическим отталкиванием. Химики пытались получить вещества с координационным числом, равным шестнадцати, годами, но сообщения об успехе в этой области касались d- и f-металлов – сообщалось о получении гидридов тория, в которых торий принимал координационные числа 15 и 16, в газовой фазе был зарегистрирован комплекс с шестнадцатью связями Co-B.

Жизнь замечательных веществ

Поршке удалось получить ионное соединение, в котором большой точечно заряженный катион Cs+ связан ионными связями со слабо координирующимся анионом [H2NB2(C6F5)6]—, такое сочетание ионов позволило значительно превысить координационное число, равное 12. Для этого даже не потребовалось вводить в состав соединения атом водорода (самый маленький атом из тех, что могут образовывать соединения, атом гелия еще меньше водорода, но он тут не в счёт). Исследователи получили Cs[H2NB2(C6F5)6], перемешивая раствор исходных соединений – [Na(OCH2CH3)4][H2NB2(C6F5)6] и CsF в дихлорметане. Строение полученного соединения и рекордное значение координационного числа цезия были подтверждены с помощью метода рентгеноструктурного анализа.

Платина с отрицательным зарядом
Жизнь замечательных веществ

Еще одним устоявшимся представлением о поведении веществ в соединении, оставшимся у многих после школы, было то, что металлы только отдают электроны, и поэтому на атоме металла не может находиться отрицательный заряд и металл не может принимать отрицательные степени окисления.

Что касается тезиса со степенью окисления – он опровергнут достаточно давно, и имеется немало соединений, в которых степень окисления металла отрицательна. Правда, особой заслуги металлов тут нет – сам формализм подсчета степеней окисления может давать такой результат, даже если сам металл и не будет притягивать к себе электроны. С отрицательным зарядом на металле сложнее: считалось, что все же металлы не могут быть конкурентами в борьбе за электроны и, по крайней мере, в несложных по структуре веществах отрицательный заряд на металле не может существовать. В 2016 году оказалось, что бывают случаи, когда электронам лучше с металлом, чем с неметаллом.

Жизнь замечательных веществ

Исследователи из США получили в кристаллическом состоянии первую двойную интерметаллическую соль, в которой на платине локализован отрицательный заряд (Angew. Chem., Int. Ed., 2016, DOI: 10.1002/anie.201606682).

Соединение состава Cs9Pt4H (платинид-гидрид цезия) открыли специалисты по химии материалов Володимир Сметана (Volodymyr Smetana) и Аня-Верена Мудринг (Anya-Verena Mudring) из лаборатории Эймса при Министерстве энергетики США. Платинид-гидрид цезия является первым примером соединения, состоящего из трех элементов, в котором платина принимает степень окисления –2.

Известно достаточное количество гидридов, в состав которых входят щелочные металлы, платина и водород, однако в составе этих веществ платина имеет положительную степень окисления и несет положительный заряд. К настоящему времени примеры веществ, в которых имеются отрицательно заряженные ионы металлов, крайне редки.

Соединение Cs9Pt4H было выделено в виде кристаллов вишнево-красного цвета, для его получения использовали реакцию платины с металлическим цезием и гидридом цезия. Изучение платинид-гидрида цезия с помощью ЯМР-спектроскопии и квантовохимического моделирования подтвердило его строение и распределение зарядов.

* * *

Получение рекордных значений степеней окисления, координационных чисел и других параметров опять же нужно не только и не столько для «химического коллекционирования», но в первую очередь для установления природы химической связи, распределения электронной плотности. Всё это, в свою очередь, нужно для изучения поведения электронов в веществах, способов управления этими электронами и создания материалов, которые потом можно будет приспособить для чего-то полезного.

Жизнь замечательных веществ

Так, например, критерием смещения электронов от одного атома к другому определяется таким параметром, как дипольный момент – чем больше его значение, тем в большей степени электроны смещены от одного атома к другому. Ещё недавно считалось, что максимальным дипольным моментом обладают соединения с ионным типом химической связи, в которых переходит практически полный перенос электронной плотности от одного партнёра к другому, однако молекулы с ковалентными связями, связями, которые, как говорит учебник, образуются за счет общей электронной плотности, продемонстрировали большее значение дипольного момента.

Рекордный дипольный момент

Группа исследователей из Германии и Греции синтезировала гексазамещенный бензол, который отличается самым большим значением дипольного момента, зафиксированным в настоящее время для нейтральной молекулы (Angew. Chem., Int. Ed., 2016, DOI: 10.1002/anie.201508249). Рекордсменами оказались молекулы, в которых с бензольным кольцом связано сразу шесть заместителей – атомов и атомных группировок, часть из которых является донорами, а часть акцепторами электронной плотности.

1 ... 69 70 71 72 73 74 75 76 77 78
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?