Шрифт:
Интервал:
Закладка:
Бонифас Фоква (Boniface Fokwa) из Университета Калифорнии (Риверсайд) отмечает, что новое открытие может, наконец, поставить точку в длительной дискуссии о возможности или невозможности применения концепции ароматичности к гомоциклическим неуглеродным системам.
В 2012 Фоква получил твердотельный материал Ti7Rh4Ir2 B8, который стал первым примером устойчивого и выделяемого соединения, содержащего плоские циклы, состоящие только из атомов бора. Фоква добавляет, что получение цикла B3 является дополнительным весомым аргументом в пользу возможности получения и других устойчивых твердых производных бора с плоскими циклами. Исследователь надеется, что данная работа станет основой для получения новых функциональных производных бора с уникальными свойствами.
* * *
Вещества-рекордсмены могут быть самыми-самыми и, скажем, по количеству атомов углерода или кислорода – в этом случае польза от таких рекордсменов чаще всего бывает уже более понятной, поскольку для таких веществ гораздо проще подобрать задачи, которые они в состоянии решать.
Международной группе исследователей удалось получить самую длинную на настоящий момент линейную цепь, состоящую только из атомов углерода (без боковых групп), объединив в такое мономолекулярное волокно, длина которого составляет почти микрометр, 6000 атомов (Nat. Mater. 2016, DOI: 10.1038/nmat4617).
Новое достижение уверенно бьёт прошлые рекорды (цепочка из примерно сотни атомов углерода), полученную цепь можно рассматривать как модель карбина, аллотропной модификации углерода, вызывающей наибольшее число дискуссий между исследователями.
Теоретически карбин представляет бесконечную одномерную цепь из атомов углерода, связанных чередующимися одинарными и тройными связями, которая теоретически должна обладать большей прочностью и жесткостью по сравнению такими аллотропными модификациями углерода, как графен, углеродные нанотрубки и алмаз. На практике, в отличие от теории, линейные углеродные цепи с чередующимися одинарными и тройными связями быстро связываются друг с другом, образуя сшитый полимер. Эта неустойчивость, равно как и то, что за карбин многократно ошибочно принимали другие соединения, вызывает горячие споры о том, можно ли вообще получить эту аллотропную модификацию углерода.
Пичлер с соавторами предусмотрительно не назвал полученные им структуры «карбином», скоромно обозначив их как «очень длинные углеродные цепи». Проблема неустойчивости была решена следующим образом: цепи выращивали внутри углеродных нанотрубок, защищавших цепи от побочных реакций сшивки, и именно это решение позволило побить существующий рекорд в 50–60 раз.
Как отмечает Хисанори Синохара (Hisanori Shinohara), специалист по наноразмерным формам углерода из Университета Нагойи, результаты новой работы можно считать исключительными. Он полагает, что следующий шаг, который определенно надо предпринять, – извлечь линейные углеродные цепи из нанотрубок и изучить свойства материала, так сильно напоминающего карбин.
Исследователи из Германии синтезировали тетранитратэтан (C2H2N4O12), твёрдый окислитель, отличающийся одним из самых высоких содержанием кислорода из синтезированных в настоящее время соединений (Chem. Commun., 2016, 52, 916; DOI: 10.1039/c5cc09010e).
Исследование, в результате которого удалось получить новый тип твердого окислителя, является частью международного проекта по получению новых окислителей, способных заменить токсичный перхлорат аммония (NH4ClO4).
К органическим окислителям относят вещества с положительным кислородным балансом, то есть те, при горении или разложении которых наряду с обычными продуктами полного или неполного сгорания органики (вода, углекислый газ, азот, в ряде случаев – угарный газ) выделяется молекулярный кислород.
Тетранитратэтан, полученный в лаборатории Томаса Клапотке (Thomas Klapötke), не только отличается наиболее высоким содержанием кислорода по сравнению с известными в настоящее время твердыми окислителями, но и представляет собой весьма редкий пример соединения, в котором с одним атомом углерода одновременно связано больше одной богатой кислородом нитрато-группы – O–NO2.
C содержанием кислорода, равным 70,1 % и большим кислородным балансом, чем у перхлората аммония, тетранитратэтан мог бы рассматриваться как перспективный окислитель. В соответствии с расчетами эффективности его применения как окислителя в процессах горения, моделирующих горение ракетного топлива позволяют говорить о том, что смеси топливо/тетранитратэтан эффективнее смесей топливо/перхлорат аммония и многих других.
Тем не менее сам Клапотке и его коллеги пока ещё сомневаются в возможности практического применения своего детища: тетранитратэтан отличается низкой термической устойчивостью, при нагревании разлагается со взрывом, он чувствителен к трению и толчкам и способен к самопроизвольному разложению со взрывом (с другой стороны, все эти свойства присущи и чистому нитроглицерину, «взрывной характер» которого всё же методом проб и ошибок был укрощен).
До прошлого десятилетия самым сильным основанием (веществом или частицей, способной присоединять положительно заряженный атом водорода, зачастую «вырывая» его из других соединений) в течение трех десятков лет считали метил-анион H3C—. Рекорд основности метил-аниона аниона был побит в 2008 году с получением аниона LiO—, однако он не продержался и десятилетие – синтез австралийскими исследователями дианиона, устойчивого в газовой фазе, отбросил анион LiO— на второе место в шкале основности.
Сверхноснования (супероснования), которые отличаются высоким сродством к протону, такие как, например, бутиллитий или гидрид натрия, чрезвычайно важны для органического синтеза. Химики-синтетики применяют эти вещества на практике для депротонирования слабых кислот – чем слабее кислота, тем более сильное основание требуется для её депротонирования.