litbaza книги онлайнДомашняяМозг – повелитель времени - Дин Буономано

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 70 71 72 73 74 75 76 77 78 79
Перейти на страницу:

— Lombardi, M. A. (2002). Fundamentals of time and frequency. In: Mechanotronics handbook (Bishop, RH, ed.). New York: CRC Press.

— Long, M. A., Fee, M. S. (2008). Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature, 456, 189–194.

— Long, M. A., Jin, D. Z., Fee, M. S. (2010). Support for a synaptic chain model of neuronal sequence generation. Nature, 468, 394–399.

— Maass, W., Natschläger, T., Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531–2560.

— MacDonald, C. J., Lepage, K. Q., Eden, U. T., Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71, 737–749.

— MacDonald, C. J., Carrow, S., Place, R., Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33, 14607–14616.

— MacKillop, J., Amlung, M. T., Few, L. R., Ray, L. A., Sweet, L. H., Munafo, M. R. (2011). Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology (Berl.), 216, 305–321.

— Mante, V., Sussillo, D., Shenoy, K. V., Newsome, W. T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503, 78–84.

— Markram, H., Lubke, J., Frotscher, M., Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.

— Martin, F. H., Garfield, J. (2006). Combined effects of alcohol and caffeine on the late components of the event-related potential and on reaction time. Biological Psychology, 71, 63–73.

— Matell, M. S., Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research 21, 139–170.

— Matsuda, F. (1996). Duration, distance, and speed judgments of two moving objects by 4- to 11-year olds.Journal of Experimental Child Psychology, 63, 286–311.

— Matthews, M. R. (2000). Time for science education: how teaching the history and philosophy of pendulum motion can contribute to science literacy. New York: Kluwer Academic.

— Matthews, W. J. (2015). Time perception: The surprising effects of surprising stimuli. Journal of Experimental Psychology: General, 144, 172–197.

— Matthews, W. J., Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142, 865–890.

— Mauk, M. D., Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory, 3, 130–158.

— Mauk, M. D., Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340.

— McClure, G. Y., McMillan, D. E. (1997). Effects of drugs on response duration differentiation. VI: differential effects under differential reinforcement of low rates of responding schedules. Journal of Pharmacology and Experimental Therapeutics, 281, 1368–1380.

— McClure, S. M., Laibson, D. I., Loewenstein, G., Cohen,J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.

— McGlone, M. S., Harding, J. L. (1998). Back (or forward?) to the future: The role of perspective in temporal language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1211–1223.

— Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227–242.

— Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., Mauk, M. D. (2000). Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. Journal of Neuroscience, 20, 5516–5525.

— Mégevand, P., Molholm, S., Nayak, A., Foxe, J. J. (2013). Recalibration of the multisensory temporal window of integration results from changing task demands. PLoS ONE, 8, e71608.

— Meijer, J. H., Robbers, Y. (2014). Wheel running in the wild. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140210.

— Mello, G. B. M., Soares, S., Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 9, 1113–1122.

— Merchant, H., Harrington, D. L., Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336.

— Meyer, L. (1961). Emotion and meaning in music. Chicago: University of Chicago Press.

— Miall, C. (1989). The storage of time intervals using oscillating neurons. Neural Computation, 1, 359–371.

— Milham, W. I. (1941) Time & timekeepers: Including the history, construction, care, and accuracy of clocks and watches. London: Macmillan, 37.

— Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., Tanji, J. (2009). Interval time coding by neurons in the presupplementary and supplementary motor areas. Nature Neuroscience, 12, 502–507.

— Modi, M. N., Dhawale, A. K., Bhalla, U. S. (2014). CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning. Elife, 3, e01982.

— Montague, P. R. (2008). Free will. Current Biology, 18, R584–R585.

— Moorcroft, W. H., Kayser, K. H., Griggs, A. J. (1997). Subjective and objective confirmation of the ability to self-awaken at a self-predetermined time without using external means. Sleep, 20, 40–45.

— Morrone, M. C., Ross, J., Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 8, 950–954.

— Morrow, N. S., Schall, M., Grijalva, C. V., Geiselman, P. J., Garrick, T., Nuccion, S., Novin, D. (1997). Body temperature and wheel running predict survival times in rats exposed to activity-stress. Physiology & Behavior, 62, 815–825.

— Muller, T., Nobre, A. C. (2014). Perceiving the passage of time: neural possibilities. Annals of the New York Academy of Sciences, 1326, 60–71.

— Mumford, L. (2010/1934). Technics & civilization. Chicago: University of Chicago Press.

— Murakami, M., Vicente, M. I., Costa, G. M., Mainen, Z. F. (2014). Neural antecedents of self-initiated actions in secondary motor cortex. Nature Neuroscience, 17, 1574–1582.

— Nagarajan, S. S., Blake, D. T., Wright, B. A., Byl, N., Merzenich, M. M. (1998). Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphelre, and modality. Journal of Neuroscience, 18, 1559–1570.

1 ... 70 71 72 73 74 75 76 77 78 79
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?