Шрифт:
Интервал:
Закладка:
Земля производит каменный уголь, нагревая слежавшиеся болотные деревья, а нефть и природный газ образуются из остатков микроскопического морского планктона. Жизнь в океанских водах бурлила гораздо раньше, чем растения успели колонизировать массивы суши, однако нефть, питающая нашу цивилизацию XXI века, сформировалась примерно через 200 миллионов лет после буйных лесов каменноугольного периода. Эта нефть образовалась в исчезнувшем океане Тетис в два этапа – около 155 и около 100 миллионов лет назад[628], в конце юрского и в середине мелового периода.
Пронизанные солнцем поверхностные воды земных океанов сегодня кишат микроскопическими живыми организмами, которые принято называть общим термином «планктон». Основу океанских экосистем составляет обычно фитопланктон – диатомеи, кокколиты и динофлагелляты. Эти одноклеточные фотосинтезирующие организмы растут на солнечной энергии, при помощи которой они улавливают углекислый газ и образуют из него сахара и другие необходимые им органические молекулы, а в качестве побочного продукта, как и растения, выделяют кислород. Амазонские джунгли часто называют легкими планеты, но на самом деле большую часть кислорода, которым мы дышим, производят мириады фитопланктона, дрейфующего в морях. И когда для его роста складываются подходящие условия, в воде накапливаются поразительно плотные популяции этих одноклеточных: молочно-бирюзовые облака кокколитов в воде видны даже из космоса.
В царстве планктона достаточно и зоопланктона – микроскопических травоядных и хищников вроде фораминифер и радиолярий. Эти микроорганизмы способны пропускать крошечные щупальца в поры своих изящных раковин, чтобы ловить и пожирать менее удачливый планктон. И фитопланктон, и зоопланктон, в свою очередь, становятся добычей рыб, которых едят более крупные рыбы, а также отфильтровываются из морской воды китами, которые заглатывают их в огромных количествах, – а следовательно, планктон служит основой всей океанской пищевой сети. Если планктон не попадается хищникам и умирает естественной смертью, его перерабатывают гнилостные бактерии, которые перерабатывают углерод и другие питательные элементы и возвращают их в экосистему. Планктонная экосистема, состоящая из производителей, хищников, падальщиков и биоредукторов, не менее сложна, чем Серенгети с ее травой, газелями, гепардами и стервятниками, просто все это разыгрывается в микроминиатюре в сверкающих поверхностных водах земных океанов.
Когда планктон умирает, он опускается через толщу воды все глубже и глубже, где все темнее и темнее, а вместе с ним медленно тонут частички минералов, которые принес в океан ветер или смыли реки с континентов. Эти плавное и непрерывное осаждение разлагающегося органического и неорганического мусора называется морским снегом. Даже самые глубокие океанские пучины сегодня получают достаточно кислорода благодаря глобальной циркуляции морской воды, поэтому органика в основном поглощается бактериями, а углерод возвращается в атмосферу.
Все это происходит сегодня почти на всей площади океанов. Но чтобы собрать на морском дне органический мусор, которому предстоит превратиться в нефть, нужна высокая производительность планктона в поверхностных слоях воды в сочетании с низким уровнем кислорода у дна: тогда бактерии не смогут вторично перерабатывать углерод и он накопится на дне в составе черного, богатого органическими соединениями ила (как мы уже знаем, аналогичные условия нужны и для формирования угольных пластов). Эта насыщенная углеводом грязь затем оказывается погребена под дальнейшими отложениями, прессуется и отвердевает в черный глинистый сланец. Это и есть исходный материал для неочищенной нефти и природного газа по всей планете. Сланец погружается все глубже и глубже и подогревается внутренним жаром планеты, пока не попадает в так называемую «главную зону нефтеобразования» – окно температур примерно в 50–100 °C. Сложные органические соединения из останков мертвых морских организмов на этом медленном огне расщепляются и превращаются в длинные цепочки углеводородных молекул нефти. Если сланцевые глины подвергаются воздействию более высоких температур, примерно до 250 °C, глубинная химия разрушает и эти длинные цепочки и превращает их в маленькие углеродосодержащие молекулы, в основном метан, но иногда и этан, пропан и бутан, то есть в природный газ. Как правило, главная зона нефтеобразования бывает на глубине от 2 до 6 километров, и сланцевой глине нужно более 10 миллионов лет на то, чтобы оказаться погребенной на такой глубине под непрерывными осаждениями.
Колоссальное давление на такой глубине выжимает жидкую нефть из исходной породы, и она просачивается наверх сквозь слой осаждений. Если ей не встретится ничего, что помешает вертикальному перемещению и удержит ее под землей, нефть просто просочится сквозь морское дно. Отличной коллекторской породой для нефти служит песчаник: поры между его частичками впитывают нефть, словно геологическая губка, а если поверх него лежит слой, скажем, тонкозернистой иловато-глинистой породы или непроницаемого известняка, запечатывающий нефтеносный слой, нефть и газ хранятся под ним и только и ждут, когда мы пробурим скважину и добудем их[629].
Как мы уже видели, этот процесс в наших океанах больше не идет. Какие же уникальные условия сложились в древнем океане Тетис 100 миллионов лет назад? Почему на его дне скопилось столько мертвого планктона, превратившегося затем в нефть?
К меловому периоду огромный сверхконтинент Пангея распался на фрагменты, и континенты снова начали расходиться. Обширного массива суши на экваторе больше не существовало. Вместо него вдоль середины мира протянулся океан Тетис, и полоса воды разделила северные и южные континенты. А следовательно, рисунок океанских течений тогда был совсем иным: поток воды мог беспрепятственно обойти вокруг света. Это экваториальное течение нежилось на тропическом солнце и стало очень теплым.
Впрочем, в разгар мелового периода вся планета была жаркой теплицей – на экваторе поверхностные воды достигали температуры 25–30 °C и даже на полюсах были не очень холодными – не ниже 10–15 °C. Никаких ледяных шапок там не было, и в Канаде и даже Антарктиде росли густые леса. Уровень океана также был гораздо выше сегодняшнего, поскольку не было полярных ледников, удерживавших воду. Кроме того, в земной коре шли активные процессы образования рифтов – при расхождении континентов образовались Северо-Атлантический и Южно-Атлантический рифты. Поскольку новая океанская кора формируется в этих спрединговых центрах, она еще разогретая и легкая и поднимается, образуя протяженные хребты подводных гор. Эти громадные океанские кряжи вытесняли много воды, отчего уровень Мирового океана поднимался еще выше. Сочетание жаркого климата и активного образования рифтов на морском дне означало, что в меловый период уровень моря был рекордно высоким за последние миллиарды лет истории нашей планеты – вероятно, на 300 метров выше, чем сейчас[630].
Следовательно, обширные площади континентов оказались под водой – Европа была затоплена почти полностью, Западное внутреннее море разлилось по всей середине Северной Америки от Мексиканского залива до самой Арктики (мы видели это в главе 4, когда анализировали закономерности голосования на юго-востоке США), а Транссахарское море занимало Африку от океана Тетис до современных Ливии, Чада, Нигера и Нигерии. Бурная вулканическая активность, всегда связанная с повсеместным образованием рифтов, также выбрасывала в море много питательных веществ, удобрявших стаи планктона. Так что планета в конце мелового периода была покрыта не только глубокими океанами, но и мелкими морями по их краям, чьи теплые воды создавали идеальные условия для роста планктона.