litbaza книги онлайнДомашняяИскусство статистики. Как находить ответы в данных - Дэвид Шпигельхалтер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 88
Перейти на страницу:

Искусство статистики. Как находить ответы в данных

Рис. 1.4

Пример с сэндвичем в виде двух пиктографических диаграмм, где люди с раком кишечника случайно рассеяны в общей группе. При нормальных обстоятельствах в группе из 100 человек, не употребляющих бекон, рак кишечника развивается у 6 человек (выделены темным на первой диаграмме). В группе из 100 человек, которые ежедневно едят бекон (вторая диаграмма), выявляется один дополнительный случай заболевания (заштрихованная пиктограмма)[34]

На рис. 1.4 «раковые» пиктограммы случайным образом разбросаны среди 100 изображений. Хотя было продемонстрировано, что такое рассеяние усиливает впечатление непредсказуемости, его следует использовать только в случае одной дополнительной выделенной пиктограммы, тогда для быстрого визуального сравнения не нужно будет их считать.

Еще несколько способов сравнить две доли представлены в табл. 1.2, отражающей те же риски для людей, которые едят и не едят бекон.

Таблица 1.2

Примеры способов информирования о риске развития рака кишечника при ежедневном употреблении сэндвича с беконом и без него. «Число больных, которых нужно лечить», – это число людей, которые должны всю жизнь ежедневно съедать сэндвич с беконом, чтобы можно было ожидать один дополнительный случай рака кишечника (поэтому, пожалуй, этот параметр лучше назвать «числом людей, которые должны есть»)

Искусство статистики. Как находить ответы в данных

* Число больных, которых нужно лечить (ЧБНЛ), – один из важных параметров в здравоохранении. В обычном смысле это среднее число пациентов, которых необходимо лечить, чтобы предотвратить один неблагоприятный исход или добиться какого-то благоприятного исхода, по сравнению с контрольной группой. Автор использует понятие в более широком смысле. Прим. пер.

Обычно риск выражают фразой «1 из х», то есть «1 из 16 человек» означает 6-процентный риск. Однако использовать несколько выражений «1 из…» не рекомендуется, потому что многим людям трудно их сравнивать. Например, на вопрос «Какой риск больше – 1 из 100, 1 из 10 или 1 из 1000?» около четверти людей ответили неверно: проблема в том, что большее число здесь связывается с меньшим риском, поэтому для правильного ответа требуется некоторая сообразительность.

Под шансами на событие понимается отношение вероятности его наступления к вероятности того, что оно не произойдет. Например, из 100 человек, не употребляющих бекон, у 6 будет выявлен колоректальный рак, а у 94 – нет, а значит, шансы заболеть раком у людей в этой группе составляют 6/94, что читается как «6 к 94»[35]. Шансы обычно используют в различных ставках, но они также широко применяются в статистическом моделировании долей, а это означает, что медицинские исследования обычно выражают эффекты, связанные с лечением или поведением, именно в отношении шансов.

Несмотря на то что отношение шансов часто встречается в исследовательской литературе, это не всегда подходящий способ показать разницу в рисках. Если события происходят достаточно редко, то такие отношения будут численно близки к относительным рискам, как в случае сэндвичей с беконом, но для распространенных событий отношения шансов могут сильно отличаться от относительных рисков, и следующий пример показывает, как это может запутать журналистов (и остальных людей).

Как можно рост с 85 до 87 % назвать 20-процентным повышением?

Статины широко используются для снижения уровня холестерина и риска инфарктов и инсультов, однако некоторых врачей беспокоят побочные эффекты их применения. Исследование, опубликованное в 2013 году, установило, что 87 % людей, принимавших статины, сообщали о мышечных болях – по сравнению с 85 % тех, кто их не принимал. Если посмотреть на способы сравнения рисков, представленные в табл. 1.2, то можно сказать либо об увеличении абсолютного риска на 2 %, либо о примерно таком же увеличении относительного риска: 0,87 / 0,85 ≈ 1,02. Шансы для обеих групп равны, соответственно 0,87 / 0,13 = 6,7 и 0,85 / 0,15 = 5,7, а значит, их отношение составляет 6,7 / 5,7 = 1,18. Получилось такое же значение, как и у сэндвичей с беконом, хотя при совершенно других абсолютных рисках.

Газета Daily Mail неправильно интерпретировала это отношение шансов 1,18 как относительный риск и напечатала статью под заголовком: «Статины повышают риск на 20 %», что является серьезным искажением результатов исследования. Однако винить надо не только журналистов: в кратком содержании статьи было указано лишь отношение шансов – без упоминания о том, что оно соответствует разнице между абсолютными рисками в 87 и 85 %[36].

Это подчеркивает опасность применения отношения шансов в любом контексте, кроме научного. Всегда лучше сообщать аудитории о понятных ей абсолютных рисках вне зависимости от того, касаются они бекона, статинов или чего-то другого.

Примеры в этой главе продемонстрировали, как кажущаяся простой задача по вычислению и выражению величины долей может превратиться в довольно сложную, и здесь нужно проявлять осторожность. Психологи все активнее изучают воздействие различных форматов числовых и графических данных на наше восприятие. Коммуникации – важная часть цикла решения проблем, и она не должна зависеть от личных предпочтений.

Выводы

• Бинарные переменные принимают только два значения: да и нет. Информацию о нескольких таких переменных можно выражать в виде доли случаев, которую составляет какая-то из них.

• Положительный или отрицательный фрейминг может повлиять на эмоциональное восприятие данных.

1 ... 4 5 6 7 8 9 10 11 12 ... 88
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?