Шрифт:
Интервал:
Закладка:
Если на уровне экономики стоимость, создаваемая искусственным интеллектом, будет распределяться широко, то в рамках отдельной отрасли может возникнуть противоположная ситуация. Компании, первыми применившие ИИ в своих бизнес-моделях, получат существенное преимущество как первопроходцы. Вполне вероятно, что «победитель получит все», поскольку предприятия, имеющие наиболее эффективные стратегии использования больших данных и искусственного интеллекта, приобретают значительное конкурентное преимущество. Вследствие первостепенной важности данных для эффективного использования ИИ первым шагом должна стать успешная стратегия в области данных. Следовательно, предприятиям и организациям необходимо сосредоточиться на создании эффективных систем сбора и управления данными, чтобы подготовиться к использованию ИИ. В некоторых случаях это связано с решением серьезных этических вопросов, касающихся, например, неприкосновенности личных данных сотрудников и клиентов. Организации, которые не сумеют решительно перейти в наступление, станут отстающими. Мы быстро движемся к реальности, где любая фирма, правительственная структура или организация, не пользующаяся искусственным интеллектом, совершает громадную ошибку, которую можно с полным основанием сравнить с отключением от электросети.
Превращение искусственного интеллекта в подлинно универсальный общедоступный ресурс, его проникновение в каждую фирму, организацию и в каждый дом неизбежно приведут к преобразованию и нашей экономики, и общества. На этот процесс уйдут годы и десятилетия, и его влияние не будет однородным. В одних областях ИИ, скорее всего, произведет революцию уже в ближайшие годы, в других подрывного изменения придется ждать гораздо дольше. В следующей главе рассматривается ряд практических последствий применений искусственного интеллекта как системной технологии, делается попытка отделить хайп от реальности и анализируется наложение перевернувшей нашу жизнь пандемии на эту быстро развивающуюся технологию.
Глава 3
Отделяем хайп: реалистичный взгляд на искусственный интеллект как на общедоступный ресурс
Двадцать второго апреля 2019 года компания Tesla провела мероприятие, которое назвала «День беспилотника». Оно должно было привлечь внимание к технологии беспилотного управления транспортным средством, которой компания оснащает все свои автомобили. Илон Маск и другие топ-менеджеры, а также инженеры выступили с презентациями. В ходе мероприятия Маск сказал: «Я с полнейшей убежденностью предсказываю, что в следующем году Tesla представит беспилотные роботакси». Далее он высказал предположение, что к концу 2020 года миллион таких машин компании Tesla будут ездить по дорогам общего пользования[29]. Под роботакси Маск подразумевал в подлинном смысле самоуправляемые автомобили, способные функционировать без людей в салоне, брать пассажиров и доставлять их в любые места назначения. Иными словами, он объявил о создании в полном смысле роботизированной версии Uber или Lyft.
Это был ошеломляющий прогноз, намного опережающий ожидания практически всех экспертов, которых я опрашивал. Несколько дней спустя в эфире Bloomberg TV я сказал, что был «поражен» предсказанием Маска и считаю его «необычайно оптимистичным и, пожалуй, даже несколько безрассудным». Я высказался так потому, что столь радикальное заявление, безусловно, должно было вызвать давление на Tesla со стороны рынка, ожидающего выполнения обещания. Это в сочетании со способностью компании добавлять автомобилям функции путем загрузки программ, то есть с появлением у водителей неотработанного софта, стало бы источником огромной опасности. Нет ничего страшного, когда клиенты тестируют сырые версии новой видеоигры или приложения для соцсетей, но это безответственная стратегия в отношении программного обеспечения[30], использование которого может привести к травмированию или гибели человека[31]. Действительно, уже случались аварии со смертельным исходом с участием автопилота Tesla, который умеет рулить автомобилем, разгоняться и тормозить, но тем не менее требует присмотра водителя. Кроме того, мне представляется очевидным, что, даже если бы компании удалось за год довести эту технологию до совершенства, намного больше времени потребовалось бы на адекватное тестирование автомобилей и получение одобрения регулирующего органа. Таким образом, миллион действующих роботакси Tesla к концу 2020 года просто не мог появиться. Даже выпуск единственной по-настоящему беспилотной машины на дороги общего пользования за этот срок выглядел бы как чудо.
Значительная часть «Дня беспилотника» была посвящена обсуждению новейшего микропроцессора для поддержки этой функции, создаваемого компанией Tesla. Раньше она использовала оптимизированные для глубоких нейронных сетей чипы производства NVIDIA. Tesla заявила, что ее новый чип обеспечивает беспрецедентные возможности, но руководители NVIDIA быстро осадили ее, отметив, что последние версии их чипов для ИИ не уступают продукту, который разрабатывает Tesla, а может, даже быстрее его[32].
Тем не менее, наблюдая за ходом «Дня беспилотника», я понял, что Tesla действительно обладает впечатляющим конкурентным преимуществом — тем, что, возможно, позволит ей потеснить конкурентов и первой создать полностью беспилотные автомобили. Это преимущество кроется не в особом процессоре и даже не в алгоритме. Как это часто бывает в области искусственного интеллекта, оно заключается в данных, принадлежащих Tesla. Каждый автомобиль Tesla имеет восемь камер, которые непрерывно работают, делая снимки дороги и обстановки вокруг автомобиля. Бортовые компьютеры способны оценивать эти снимки, выбирать те, что представляют интерес для компании, и автоматически загружать их в сжатом виде в сеть Tesla. По дорогам мира уже ездит свыше 400 000 оборудованных камерами машин, и их число быстро увеличивается. Иными словами, Tesla имеет доступ к огромному массиву данных о реальном мире в виде фотографий, и ни один из ее конкурентов не может даже приблизиться к такому объему информации.
Директор Tesla по ИИ Андрей Карпати рассказал, что компания может запрашивать фотографии определенного типа от своего «парка» оборудованных видеокамерами машин. Например, если инженеры Tesla хотят обучить свою систему беспилотного управления поведению в условиях дорожных работ, то могут затребовать тысячи реальных фотографий ремонта на автодорогах и использовать эти изображения для обучения программы-автопилота посредством компьютерного моделирования. Поскольку все разработки в области самоуправляемых автомобилей сильно зависят от моделирования, способность Tesla использовать огромные объемы данных из реального мира — ее потенциально подрывное преимущество. Как говорится, реальность более удивительна, чем любая фантастика, но никакой инженер не способен разработать модель, детально воспроизводящую зачастую немыслимую реальность, зафиксированную камерами постоянно расширяющегося парка автомашин Tesla.
Этот пример иллюстрирует тот факт, что новости о прогрессе в области искусственного интеллекта часто представляют собой мешанину хайпа и сенсаций, вплетенных в сообщение, содержащее и важную информацию. Как я уже отмечал, искусственный интеллект неизбежно станет общедоступным ресурсом и в конечном счете затронет буквально все сферы жизни. Однако прогресс будет неоднородным: некоторые технические проблемы трудноразрешимы. В частности, ряд самых резонансных и распиаренных ИИ-приложений, скорее всего, не дотянут до наших ожиданий, тогда как огромные достижения в других, менее публичных,