litbaza книги онлайнДомашняяБольшое космическое путешествие - Дж. Ричард Готт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 84 85 86 87 88 89 90 91 92 ... 131
Перейти на страницу:

Именно так Эйнштейн объяснял гравитацию. Ньютон бы сказал, что если взять две массы и оставить их в покое посреди межзвездного пространства, то они с ускорением устремились бы друг к другу под действием силы тяготения, пока бы наконец не столкнулись. Ньютон бы так решил, поскольку две массы воздействуют друг на друга с некоторыми силами через разделяющее их расстояние, и эти силы притягивают две массы друг к другу. Эйнштейн сказал бы, что две массы искривляют пространство-время каждая вокруг себя. В такой искривленной среде две частицы просто летят по кратчайшим доступным им траекториям и в итоге слетаются вместе.

Большое космическое путешествие

Рис. 19.3. Каждый из грузовичков едет прямо на север, но из-за кривизны глобуса они сближаются и сталкиваются на Северном полюсе. Снимок предоставлен Дж. Ричардом Готтом

Предположим, у нас есть два грузовика, расположенных на некотором расстоянии от экватора, и оба этих грузовика едут на север (рис. 19.3 внизу). Они отправляются в путь по параллельным траекториям, поначалу ни приближаясь друг к другу, ни отдаляясь друг от друга, но не остаются на параллельных маршрутах, так как поверхность Земли искривлена. Допустим, оба грузовика едут на север по соседним меридианам (а это геодезические линии). Оба они направляются на север и сначала движутся параллельно друг другу, но чем дальше на север они забираются, не отклоняясь от своих меридианов, тем ближе друг к другу оказываются. В конце концов они столкнутся на Северном полюсе.

Согласно Эйнштейну, масса каждой частицы – источник кривизны пространства-времени, и эта кривизна подобна кривизне Земли. Направление «на север» соответствует направлению времени в будущее. Меридианы, по которым едут два грузовика, соответствуют мировым линиям двух частиц. Такие максимально прямые мировые линии двух частиц рисуются вместе в силу кривизны пространства-времени. Обратите внимание: если пустить два грузовичка по двум параллельным трекам на плоской столешнице, то грузовички так и поедут параллельно друг относительно друга и их геодезические линии останутся на одинаковом расстоянии. В теории Эйнштейна гравитационное притяжение обусловлено кривизной пространства-времени.

Масса и энергия вызывают искривление пространства-времени – но как? Эйнштейн принялся работать над этой идеей. Он поинтересовался у одного из друзей-математиков: «Мне нужно будет изучить тензоры кривизны Римана?» Друг ответил: «Боюсь, что да». Бернхард Риман разработал теорию кривизны в многомерных пространствах. Он писал работу, аналогичную диссертации, под руководством Карла Фридриха Гаусса. Гаусс был великим математиком и сформулировал теорию (гауссовой) кривизны для плоских поверхностей – например, для поверхности Земли. Гаусс предложил Риману самому придумать три варианта темы для диссертации. Третьей из любимых тем Римана была кривизна в высших измерениях. Гаусс сказал: «Работайте над ней». Риман так и сделал, и это был настоящий подвиг. Риман продемонстрировал, что для понимания кривизны в многомерных пространствах нужна сущность, которая сегодня именуется «тензор кривизны Римана»:. В четырех измерениях он казался математическим монстром, насчитывавшим 256 компонент[30]. К счастью, многие из этих компонент были идентичны, так что, фактически, независимых компонент было всего 20 – все равно очень много. Эту математическую тварь Эйнштейну предстояло укротить. Он хотел сформулировать уравнения гравитационного поля, которые были бы полностью аналогичны максвелловским уравнениям электрического и магнитного поля. Как именно энергия и масса искривляют пространство-время? Какие геометрии возможны? Он хотел получить ответы на эти фундаментальные вопросы при помощи своей теории, но теория также должна была хотя бы приблизительно согласовываться с ньютоновскими теоретическими построениями для малых скоростей и небольшой кривизны, поскольку в таких условиях теория Ньютона работает очень хорошо.

Эйнштейн работал над этой проблемой с 1907 по 1915 год. Для этого потребовалась очень сложная математика. Неоднократно Эйнштейн оказывался на тупиковом пути. Но он не сдавался. И вот в конце 1915 года он нащупал верные уравнения поля. Вот они (в соответствующих единицах, где постоянная Ньютона G и скорость света c приравнены к 1). Уравнения выглядят так: Rμν – ½gμνR = 8πTμν. Правая часть уравнения соответствует «материи» (массе, излучению и так далее), расположенной в некоторой точке пространства-времени, а левая часть уравнения показывает, каким образом пространство-время искривлено в этой точке[31]. Материя во Вселенной определяет, как именно искривляться пространству-времени. Эйнштейн избавился от таинственного ньютоновского «действия на расстоянии». Материя, содержащаяся в некоторой точке Вселенной (вещество, излучение), заставляет пространство-время определенным образом искривляться именно в этом месте. Частицы и планеты также выбирают курс строго локально: они просто перемещаются по прямой в искривленном пространстве-времени. Вывод этих уравнений оказался тем еще испытанием. Сначала Эйнштейн полагал, что верные уравнения имеют вид Rμν = 8πTμν.То есть он потерял один член. Интересно, что уравнения в таком виде корректны для вакуума. В вакууме никакой материи нет, поэтому, рассудил Эйнштейн, в вакууме Tμν = 0.Поэтому он решил, что в вакууме и Rμν = 0.Но если Rμν = 0 в пустоте, то R (вычисляемое по компонентам Rμν) также будет равно нулю, что будет удовлетворять и верным уравнениям поля с дополнительным членом – ½gμνR, которые были сформулированы в 1915 году. Ведь в вакууме и дополнительный член тоже будет равен нулю. Хотя поначалу Эйнштейн исходил из ошибочных уравнений поля, они, к счастью, оказались корректны для вакуума. Неделю спустя он понял, что нужно добавить еще один член – ½gμνR, чтобы в уравнениях учитывалось локальное сохранение энергии. Локальное сохранение энергии связано с таким условием: общая масса-энергия в комнате может возрасти лишь в том случае, если через дверь в комнату попадет какая-то дополнительная материя. Это очень удобное свойство уравнений. Точно так и Максвелл заметил, что должен добавить в свои уравнения еще один член, чтобы обеспечить сохранение заряда, и именно этот дополнительный член натолкнул Максвелла на мысль, что свет – это электромагнитные волны.

1 ... 84 85 86 87 88 89 90 91 92 ... 131
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?