Шрифт:
Интервал:
Закладка:
В результате некоторые страны отказались от постройки ядерных станций (Австрия, Италия), другие запланировали их закрытие в ближайшем будущем (Германия, Швеция), и большинство стран, имеющих АЭС, либо совсем перестали вводить новые мощности десятилетия назад (Канада, Великобритания) или вводили очень мало, куда меньше, чем нужно даже для замены старых электростанций. США и Япония – две наиболее заметные страны в последней категории: к середине 2015 года по всему миру работало 437 реакторов, из 67 строящихся 25 находились в Китае, 9-в России и 6-в Индии (WNA 2015b). Западные же страны в сущности отказались от этого чистого, лишенного выбросов углерода способа генерации электричества.
Растущая зависимость от ископаемого топлива сделала биологическое топливо куда менее важным, но по причине быстрого роста населения в сельских регионах бедных стран (где очень ограничен доступ к современным источникам энергии, либо его совсем нет) мир сейчас потребляет больше дров и каменного угля, чем когда-либо. Согласно моим лучшим оценкам, валовая энергия традиционного биотоплива достигла около 45 ЭДж в 2000 году, почти в два раза больше, чем было в 1900-м (Smil 2010а), и на протяжении первых 15 лет XXI века эта величина почти не уменьшилась. Это значит, что в 2000 году биотопливо давало примерно 12 % первичной энергии в мире, и к 2015-му эта доля упала до 8 % (в 1900 году было 50 %).
К сожалению, даже такого снижения (эквивалент около 1 Гт нефти) недостаточно: с сотнями миллионов людей в сельских районах бедных стран Африки, Азии и Латинской Америки, где все еще жгут растительное топливо, спрос на дрова и древесный уголь остается ведущей причиной уничтожения лесов. Наиболее остро эта проблема стоит в районе Сахеля в Африке, в Непале, Индии, континентальном Китае и большей части Центральной Америки. Самый продуктивный способ справиться с деградацией окружающей среды – ввести новые, эффективные (2530 % по сравнению традиционными 10–15 %) печи: эта замена оказалась наиболее успешной в Китае, где такие печи были введены в 75 % домашних хозяйств до конца века (Smil 2013).
Вместе с тем, древесное топливо добывается не только в лесах. Во многих бедных странах значительную долю собирают семьями (чаще всего женщины и дети) в зарослях кустарника, на плантациях (каучука, кокосового ореха), и в придорожных посадках. Исследования в Бангладеш, Пакистане и Шри-Ланке показали, что добытое не в лесах дерево составляет более 80 % от всего, что сжигается (RWEDP 1997). По меньшей мере пятую часть всех пожнивных остатков в бедных странах до сих пор сжигают, и сухой навоз остается важным источником энергии в некоторых регионах Азии, хотя древесный уголь везде стал предпочитаемым видом биотоплива. Как ожидалось, Китай и Индия – крупнейшие в мире потребители традиционного биотоплива, за ними идут Бразилия и Индонезия, но по относительным параметрам всех опережает Африка к югу от Сахары, где в конце XX века некоторые страны получали более 80 % сельскохозяйственной энергии от древесины и пожнивных остатков, и это по сравнению с 25 % в Бразилии и менее 10 % в Китае (Smil 2013а). Если пересчитать на душу населения, то показатели варьируются от 5 до 25 ГДж /год.
Последние десятилетия XX века ознаменовались появлением сравнительно масштабного производства этанола. Эксперименты с этанолом как топливом для пассажирских автомобилей проводились еще перед Второй мировой войной (и Генри Форд принял в них участие), но современное массовое производство транспортного спирта началось в 1975 году в Бразилии, где его получали при ферментации сахарного тростника (Macedo, Leal and da Silva 2004; Basso, Basso and Rocha 2011). В США такое же производство, только на основе кукурузы, стартовало в 1980 году (Solomon, Barnes and Halvorsen 2007). Выработка в Бразилии начала стагнировать с 2008 года, а в США, где программа была утверждена Конгрессом в 2007-м, производство вряд ли вырастет. Также существует небольшая промышленность по производству биодизеля, где жидкое топливо делают из богатой маслом фитомассы – соевых бобов, рапса и плодов масличной пальмы (USDOE 2011). Глобальное производство жидкого биотоплива достигло около 75 Мт в нефтяном эквиваленте в 2015 году, то есть около 1,8 % энергии, извлекаемой ежегодно из сырой нефти (ВР 2016). Развертывание этой отрасли до такой степени, чтобы она заняла значительную долю на мировом рынке биотоплива, откровенно говоря, маловероятно (Giampietro and Mayumi 2009; Smil 2010a).
Использование потенциальной и кинетической энергии воды для производства электричества – второй наиболее важный возобновляемый источник энергии, идущий за традиционным и современным биотопливом. Водяная генерация электричества началась в 1882 году, одновременно с тепловой, когда маленькая мельница на Фокс-ривер в Апплетоне, штат Висконсин, привела в движение два динамо и дала 25 КВт для 280 слабых ламп (Dyer and Martin 1929). Еще до конца столетия все более и более высокие дамбы возводились в альпийских странах, в Скандинавии и США. Но первая большая гидроэлектростанция, построенная у Ниагары в 1895 году, казалась маленькой (37 МВт) рядом с проектами 1930-х в США, где поддержку начало оказывать государство через Службу мелиорации, и в СССР, где они были частью сталинской индустриализации (Allen 2003). Крупнейшими проектами в США были плотина Гувера на реке Колорадо (1936; 2,08 ГВт) и плотина Гранд-Кули на реке Колумбия, первую ступень которой закончили в 1941 году (окончательная мощность 6,8 ГВт).
За три послевоенных десятилетия ГЭС стали источником почти 20 % мирового электричества, крупные проекты были завершены в Бразилии, Канаде, СССР, Конго, Египте, Индии и Китае. В большинстве стран строительство станций замедлилось или прекратилось в 1980-х годах, но только не в Китае, где крупнейшая плотина в мире, «Три ущелья» (номинальная мощность в 18,2 ГВт в 26 единицах), была завершена в 2012 году (Chincold 2015). В 2015-м водяные турбины давали около 16 % мирового электричества, а в Канаде эта доля была 60 %, в Бразилии – 80 %, и даже выше в целом ряду малых африканских стран.
Два возобновляемых источника энергии, получившие немалую долю внимания – солнечная и ветровая. Интересом они обязаны быстрому увеличению мощностей – между 2010 и 2015 годами глобальная генерация с помощью ветра выросла в 2,5 раза, а с помощью солнца почти в 8 раз – и преувеличенным ожиданиям их значения в будущем. Быстрый рост – обычный признак первых стадий развития, но вклад этих двух источников энергии остается пренебрежимо малым на глобальном уровне (в 2015 году ветер давал около 3,5 %, прямое солнечное излучение – 1 % мирового электричества). Интеграция более объемных потоков этих прерывистых энергий (многие ветровые турбины работают только 20–25 % времени, находящиеся в море установки – 40 %) в существующие сети ведет за собой много проблем (J. Р. Morgan 2015).
Развитие современной ветровой энергетики началось с налоговых субсидий в США в начале 1980-х годов, и резко закончилось, когда субсидии были прекращены в 1985-м (Braun and Smith 1992). Европа стала новым лидером в 1990-х, когда несколько правительств – Дания, Великобритания, Испания, и в первую очередь Германия, в рамках программы Energiewende, – объявили политику перехода на возобновляемые источники. Издержки уменьшились, и более мощные установки (сейчас до 8 МВт, обычно 1–3 МВт) и крупные кластеры ветрогенераторов (включая расположенные в прибрежной зоне) обеспечили рост с менее чем 2 ГВт в 1990 году до 17,3 ГВт в 2000-м и 432 ГВт к концу 2015 года (Global Wind Energy Council 2015).