Шрифт:
Интервал:
Закладка:
Итак, может показаться, что и впрямь есть некие более фундаментальные уровни описания (например, описание на языке атомов), — но в какой-то момент (возможно, когда речь заходит о биологии) иерархия уровней становится менее очевидной.
Хотя если покопаться глубже, то все не так ясно даже в случаях, кажущихся очевидными. Например, если свойства атомов заданы, то они определяют устройство периодической таблицы. Но можно ли действительно изменить основы химии без изменения свойств атомов? Нет! Если нам предоставят неопровержимые доказательства отличия химических реакций от тех, которые должны протекать согласно современной теории, мы не можем просто пожать плечами и сказать: «Квантовая теория и свойства частиц (теория F) определяют химию (теорию D), но химия не определяет квантовую теорию». Поскольку если теория F определяет D, она же определяет, чем D не является! Поэтому мы будем вынуждены внести какие-то изменения в F, чтобы создать новую теорию, включающую наше новое знание о теории D. На самом деле это именно то, что мы делаем, тестируя «фундаментальные» теории. Но если это так, следует признать, что, хотя достоинством теории F является ее большая простота, она не более детерминирована, чем теория D.
Более того: явный детерминизм часто игнорирует весьма важные элементы. Рассмотрим биологические законы наследственности, которые формулируются на языке генов, хромосом, воспроизводства и так далее. Ясно, что здесь важнее всего химия. Но эти законы генетики почти наверняка нельзя вывести, взяв за основу законы химии (или атомной физики). Использование ДНК, схемы кодирования аминокислот (левосторонних, а не правосторонних), спаривание хромосом и половая принадлежность — эти и подобные процессы и свойства в очень большой степени исторически детерминированы. Да, они хорошо «работают», но практически наверняка есть и другие «решения», при которых законы генетики и наследственности были бы совсем другими. Таким образом, чтобы перейти от казавшейся «фундаментальной» химии к «менее фундаментальной» генетике, требуется большое количество вспомогательной исторической информации. Как эта информация вписывается в нашу схему? Если добавить ее к «фундаментальному» описанию с помощью химии, результат уже не кажется простым. Кроме того, при имеющихся законах генетики может оказаться, что довольно трудно подобрать другой набор химических законов или законов атомной физики, приводящих к тем же законам генетики независимо от эволюционной истории. Итак, по-видимому, здесь детерминизм скорее указывает на другой путь от предположительно «менее фундаментального» к предположительно «более фундаментальному»!
Но ведь нам, конечно же, удастся избежать подобных досадных недоразумений и отстоять честь физики элементарных частиц, если мы ограничимся только физикой и химией? Не факт! Вспомните: созерцая РИСУНОК В ПЕЩЕРЕ, мы обнаружили, что казавшееся неизменным (например, законы атомной физики) в разных вселенных «может сказочным образом меняться». Это так, поскольку «одна дхарма», которая «наполняет их все», проявляет себя в форме других законов, применимых при энергиях меньших масштабов. Таким образом, возможно, есть одно-многозначное соотношение между всеобъемлющей теорией и разными наборами «фундаментальных законов» — наподобие тех, которые изучают физики-атомщики в коллайдерных экспериментах. При таком сценарии законы, которые мы имеем, обусловлены нашей конкретной космической историей или, возможно, тем, где именно мы находимся в некоей порожденной космосом мультивселенной, содержащей в себе все возможные их формы.
Другие аспекты фундаментальной физики тоже могут быть более условными, чем мы привыкли считать. Предположим, мы когда-нибудь столкнемся с внеземной жизнью и поймем ее — или же создадим достаточно мощный искусственный интеллект. Будут ли законы физики, сформулированные на основе огромного массива появившихся у нас новых данных, такими же, как те, которые мы знаем? Мы можем предположить, что они будут столь же эффективны. Представляется вероятным, что и с точки зрения математики их уровень будет в какой-то мере эквивалентен нашему. Однако концептуально эта физика может быть совсем не такой, и ее основу могут составлять совсем другие элементы. Например, в учебниках, рассказывая о квантовой механике, обычно используют волновую механику Шрёдингера и ее формулировку через интегралы по траекториям Фейнмана (оба этих подхода мы здесь обсудили). Однако есть еще эквивалентная им матричная механика Гейзенберга, теория скрытых переменных Бома, а также формулировки квантовой механики (в разной степени успешные и полные), основанные на теории категорий, теории информации, теории конструктора, моделирования с помощью клеточных автоматов и т. д. Даже если на языке математики их можно отобразить одну на другую, эти отображения часто неполны, и каждая из этих формулировок может привести к совсем разным представлениям о мире, обозначив новые направления, требующие дальнейшего изучения. Почему механика Шрёдингера доминирует — по крайней мере в учебниках и университетских курсах? Вероятно, в немалой степени лишь потому, что она была первой и проводить вычисления с ее помощью легко.
Итак, при описании многих физических систем мы имеем дело с комбинацией из набора относительно простых правил и достаточно сложной их детализации, обусловленной начальными условиями, предысторией, уточнением нашего места во вселенной (или Вселенной, или мультивселенной, или нашего квантового состояния), социальной историей, влияющей на то, какие концепции наиболее естественно для нас использовать в данном случае, и так далее. Законы, определяющие поведение системы, представляют собой не допускающую упрощения комбинацию двух составляющих — правил и их детализации. Но если обе эти составляющие существенны, возможность вывести то, что мы считаем «менее» фундаментальным, из «более» фундаментального не столь очевидна и достаточно неоднозначна, причем выводы о том, что из чего следует, могут быть практически противоположными.
Несмотря на это, у нас все еще остается впечатление, что атомам, именно в силу их малого размера, присуще нечто фундаментальное — концептуальная простота, отличающая их от неупорядоченного, сложного мира биохимических реакций, экономики или кодекса самурая бусидо. Однако и в этом случае можно привести примеры, которые заставят задуматься. Иногда законы, регулирующие поведение системы из большого числа частиц, могут быть красивыми и простыми. Рассмотрим, как соотносятся машинные расчеты и атомы. Теория вычислимости — простая, хорошо разработанная теория, сформулированная на языке машин Тьюринга, логических вентилей и других подходов. Эти идеи можно использовать при расчетах транзисторов, игрушек лего, состояния черной дыры, спаренных оснований ДНК или работы джинниума. То же относится и к законам статистической механики, таким как второй закон термодинамики: их одинаково легко применить как к монастырской