Шрифт:
Интервал:
Закладка:
Если вы произвели оценку всех этих значений, то можете применить теорему Байеса для оценки апостериорной вероятности[107]. Именно в этой цифре мы и заинтересованы больше всего – насколько велика вероятность того, что нам изменяют, при условии что мы нашли чужое белье?
Расчет и простая алгебраическая формула, позволяющая его сделать, приведены в табл. 8.2.
Таблица 8.2. Пример расчета вероятности измены по теореме Байеса
Оказывается, что вероятность измены все равно достаточно мала – 29 %. Это может показаться нелогичным: разве трусики не являются достаточно весомой уликой? Возможно, такой результат связан с тем, что вы использовали слишком низкое априорное значение вероятности его измены.
Хотя у невиновного человека может быть значительно меньше вариантов разумных объяснений появления трусиков, чем у виновного, вы изначально посчитали его невиновным, и это оказало большое влияние на результат расчета по уравнению.
Когда мы априорно в чем-то уверены, мы можем проявить удивительную гибкость даже при появлении новых свидетельств. Одним из классических примеров таких ситуаций является выявление рака груди у женщин в возрасте старше 40 лет. К счастью, вероятность, что у женщины в возрасте после 40 лет разовьется рак груди, довольно невелика и составляет примерно 1,4 %{571}. Однако чему равна вероятность положительного результата на ее маммограмме?
Исследования показывают, что даже если у женщины нет рака, то маммограмма ошибочно покажет его наличие в 10 % случаев{572}. С другой стороны, если у нее есть рак, маммограмма выявит его примерно в 75 % случаев{573}. Увидев эту статистику, вы можете решить, что положительный результат маммограммы означает, что все очень плохо. Однако расчет по теореме Байеса с использованием этих цифр позволяет сделать иное заключение: вероятность наличия рака груди у женщины в возрасте за 40 при условии, что у нее положительная маммограмма, все еще составляет примерно 10 %. В данном случае такой результат расчета по уравнению обусловлен тем, что довольно немного молодых женщин имеют рак груди. Именно поэтому многие врачи рекомендуют женщинам не начинать регулярно делать маммограммы до 50-летнего возраста, после достижения которого априорная вероятность рака груди значительно увеличивается{574}.
Проблемы такого рода, вне всякого сомнения, сложны. Во время недавно проводимого исследования статистической грамотности американцев им приводили этот пример с раком груди. И оказалось, что всего 3 % из них смогли правильно рассчитать значения вероятности{575}. Иногда, немного замедлившись и попробовав визуализировать эту проблему (как показано на рис. 8.2), мы можем легко проверить реальностью свои неточные аппроксимации. Визуализация помогает нам легче увидеть общую картину – поскольку рак груди встречается у молодых женщин крайне редко, сам факт положительного результата маммограммы еще ни о чем не говорит.
Рис. 8.2. Графическое изображение исходных данных для теоремы Байеса на примере с маммограммой
Однако мы обычно склонны ориентироваться на самую новую или самую доступную информацию, и общая картина начинает теряться. Умные игроки вроде Боба Вулгариса научились умело пользоваться подобными недостатками нашего мышления. Вулгарис сделал выгодную ставку на Lakers отчасти потому, что букмекеры уделили слишком много внимания нескольким первым играм Lakers и изменили ставки на выигрыш командой титула с 4 к 1 до 65 к 1. Однако на самом деле команда играла ничуть не хуже, чем могла играть хорошая команда в случае травмы одного из ее звездных игроков. Теорема Байеса требует от нас более внимательно продумывать проблемы такого рода. Она может оказаться крайне полезной для выявления случаев, когда наши аппроксимации, основанные на чутье, оказываются слишком грубыми.
Но я не хочу сказать, что наши априорные ожидания всегда доминируют над новыми свидетельствами или что теорема Байеса всегда приводит к нелогичным, на первый взгляд, результатам. Иногда новые свидетельства оказываются настолько значимыми для нас, что перевешивают все остальное, и мы можем практически моментально изменить свое мнение и стать полностью уверенными в событии, вероятность которого считали почти нулевой.
Давайте рассмотрим более мрачный пример – атаки 11 сентября. Большинство из нас, проснувшись в тот день утром, присваивало практически нулевое значение вероятности того, что террористы примутся разбивать самолеты о небоскребы на Манхэттене. Однако мы признали очевидную возможность террористической атаки после того, как первый самолет врезался во Всемирный торговый центр. И у нас исчезли любые сомнения в том, что на нас было произведено нападение, после того как самолет врезался во вторую башню. Теорема Байеса способна отобразить этот результат.
Допустим, до столкновения первого самолета с башней наши расчеты вероятности террористической атаки на высотные здания Манхэттена составляли лишь 1 шанс из 20 тыс., или 0,005 %. Однако мы также должны были считать достаточно низкой вероятность ситуации, при которой самолет столкнулся бы с башней Всемирного торгового центра по ошибке. Эта цифра может быть рассчитана эмпирически. За период длительностью 25 тыс. дней до событий 11 сентября, в течение которых осуществлялись полеты над Манхэттеном, произошло всего два подобных случая{576}: столкновение с Эмпайр-стейт-билдинг в 1945 г. и с башней на Уолл-стрит, 40, в 1946 г. Следовательно, возможность подобного инцидента составляла примерно 1 шанс из 12 500 в любой случайный день. Если по этим цифрам сделать расчеты с использованием теоремы Байеса (табл. 8.3a), то вероятность террористической атаки повышалась с 0,005 до 38 % в момент столкновения первого самолета со зданием.