litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 103 104 105 106 107 108 109 110 111 ... 482
Перейти на страницу:
1960 г. в Дейтоне (штат Огайо, США) открылся первый симпозиум по бионике — прикладной науке, сфера деятельности которой находится на границе между биологией и техникой. Цель бионики — применение биологических методов или систем, найденных в природе, для изучения и разработки инженерных систем и новых технологий[912]. Девиз бионики: «Живые прототипы — ключ к новой технике», а на эмблеме изображены скальпель и паяльник, соединённые знаком интеграла.

Одним из отцов бионики и автором самого термина считается американский военный нейроанатом Джек Стил[913]. Стил был мастером на все руки: медик по образованию, с обширной областью медицинских интересов от физиологии до психиатрии и нейроанатомии, он разбирался также в инженерном деле и электротехнике, увлекался архитектурой, умел управлять самолётом и был остроумным рассказчиком. В рамках своей армейской исследовательской деятельности Стил работал над инженерными приложениями биологических моделей. Под впечатлением от работы Стила писатель-фантаст Мартин Кейдин создал роман «Киборг», по которому в начале 1970-х был снят сериал «Человек на шесть миллионов долларов» (The Six Million Dollar Man)[914].

Пионерские работы Стила способствовали оформлению и утверждению новой междисциплинарной науки, название которой, составленное из частей слов «биология» и «электроника»[915], Стил предложил в августе 1958 г.[916] Впрочем, идея в некотором роде витала в воздухе, и Стил не был одинок в желании заимствовать принципы устройства биологических объектов для решения инженерных задач. В 1950-е гг. другой американский учёный, биофизик Отто Шмитт, предложил использовать термин «биомиметика» (biomimetics, от латинских слов bios — жизнь и mimesis — подражание). Поскольку в поп-культуре слово bionic обычно ассоциируется со сверхчеловеческими способностями, в англоязычной среде сегодня чаще используют вариант Шмитта, а иногда даже термин «биомимикрия» [biomimicry], который впервые появился в работах популяризатора науки Жанин Беньюс, посвятившей этому направлению целых шесть книг[917].

Термин «биомиметика» впервые появляется в словаре Мерриам — Уэбстера в 1974 г., где определяется как «изучение строения, функций и способов формирования структур и веществ биологического происхождения (таких как ферменты или шёлк), а также биологических процессов и механизмов (например, синтеза белков или фотосинтеза) — главным образом для создания схожих продуктов искусственными методами, подобными природным»[918].

Многократное «переизобретение» бионики, по всей видимости, было связано с тем, что это направление является для развития технологий весьма древней и органической частью — при отсутствии собственного эффективного решения технология часто пытается оттолкнуться от существующего в природе «рабочего прототипа». По мере роста могущества науки и техники мы замахиваемся на копирование принципов работы всё более и более сложных биологических объектов. Озаботившись идеей создания летательного аппарата, великий Леонардо да Винчи посвятил много времени изучению полёта птиц, о чём нам известно из его записей и чертежей, но, к сожалению, задача оказалась непосильной для технологий XV–XVI вв. Однако спустя четыре столетия французский изобретатель Клеман Адер, основываясь на данных Луи Пьера Мойяра о полёте птиц, а также на собственных исследованиях принципов полёта различных живых существ — от насекомых до летучих мышей, построил летательный аппарат «Эол» (Éole), ставший, по всей видимости, первым в истории самолётом, осуществившим взлёт за счёт тяги собственной силовой установки. Девятого октября 1890 г. оснащённый паровым двигателем «Эол», похожий на гигантскую летучую мышь, смог оторваться от земли и пролетел около 50 метров[919], [920], [921].

К плодам бионики XX в. относят обычно и застёжку-липучку, принцип действия которой позаимствован у репейника[922], и поверхности, копирующие структуру акульей кожи, позволяющие улучшить аэро- и гидродинамические характеристики изделий[923] и даже препятствующие размножению бактерий[924]. Изучение крыльев бабочек помогло в разработке технологии RFID-чипов[925], изучение лап гекконов[926] и клея устриц[927] — в создании медицинских адгезивов[928]. Гидрофобные структуры[929], наносенсоры[930], холестерические жидкие кристаллы[931] — перечислять заимствованные у природы идеи можно долго.

Конечно, наши самолёты не машут крыльями, и развитие технологий зачастую приводит к тому, что в промышленных образцах мы уже с трудом можем опознать их природные прототипы: особенности производственных процессов, а также эксплуатационные требования накладывают свои ограничения на выпускаемые продукты.

Часто бионика влияет на развитие техники не напрямую. Например, наличие в природе «рабочего прототипа» может быть свидетельством принципиальной возможности создания того или иного устройства: если птицы могут летать, значит, возможно создание летательного аппарата тяжелее воздуха; если растения способны синтезировать сахара и крахмал из углекислого газа и воды, значит, можно создать устройство, выполняющее ту же функцию.

Решения, существующие в природе, являются продуктом сложного оптимизационного процесса, известного под названием «эволюция». С одной стороны, масштабы и значительная продолжительность эволюции приводят к появлению биологических систем, хорошо приспособленных к тем условиям, в которых они действуют. С другой же — решения, найденные эволюцией, могут являться оптимальными лишь локально, то есть может возникнуть ситуация, когда дальнейшее «улучшение» системы возможно только за счёт временного её «ухудшения», что затруднено давлением естественного отбора. И наконец, эволюция оптимизирует устройство живых организмов в направлении их приспособленности к среде обитания, а вовсе не к задачам, которые человек пытается решать при помощи создаваемой техники. С точки зрения эволюции человеческий мозг должен потреблять мало энергии, должен быть устойчивым к физическим воздействиям (вряд ли вам понравится, если от падения яблока на голову вы будете полностью терять память), голова младенца должна беспрепятственно преодолевать родовые пути при рождении и так далее. Все эти ограничения будут только мешать, если мы стремимся создать устройство, единственная цель которого — достижение максимальной эффективности при решении интеллектуальных задач. Словом, у нас есть основания полагать, что мозг далёк от идеала думающей машины. В конце концов, его роль в организме заметно шире: мозг — это не только думающая, но и управляющая «машина», с важной задачей поддержания автоматических процессов в организме. Головной мозг вообще не является чем-то радикально обособленным от человеческого тела — например, около 500 млн связанных с ним нейронов входят в состав так называемой энтеральной нервной системы, состоящей из нервных сплетений в оболочках полых органов желудочно-кишечного тракта[932], а ещё около 200 млн нейронов находится в спинном мозге[933]. Впрочем, задачи, которые мозгу приходится решать в связи с его управляющей функцией, можно, по всей видимости, отнести к разряду интеллектуальных, хотя их решение часто происходит без сознательного контроля.

Так или иначе, на сегодняшний день человеческий мозг — это лучшая известная нам «машина» для решения неопределённо широкого спектра интеллектуальных задач. Поэтому ещё с первой половины XX в. взоры учёных были обращены именно на

1 ... 103 104 105 106 107 108 109 110 111 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?