Шрифт:
Интервал:
Закладка:
Например, одно из первых великих математических доказательств, содержащихся в «Началах» Евклида, представляет собой объяснение того факта, что в мире чисел имеется бесконечное число неделимых чисел, которые мы называем простыми. Это доказательство по сей день приводит меня в восхищенный трепет: сама мысль о том, что нечто, кажущееся извне бесконечным и неподатливым, тем не менее можно понять. Можно спросить: раз мы допускаем возможность бесконечности чисел вообще, что может быть такого уж необычного в доказательстве существования бесконечного количества простых чисел? В конце концов, в знании о существовании бесконечного количества четных чисел нет ничего удивительного, если уж мы признали, что числа продолжаются бесконечно. И все же это доказательство остается поразительным в связи с тем, что мы на самом деле не понимаем природы простых чисел. Доказательство демонстрирует, что множество простых чисел бесконечно, не имея возможности сказать, что именно они собой представляют. Возможно, вопрос о конечности или бесконечности физической Вселенной требует использования аналогичного подхода: нужен логический аргумент, из которого следовало бы, что Вселенная должна продолжаться бесконечно, хотя мы никогда не сможем физически этого увидеть. Несмотря на все достижения древних греков, вопрос бесконечности оставался проблемным на протяжении тысячелетий. Чаще всего бесконечность считали выражением того, что недоступно нашему пониманию. Фома Аквинский, христианский богослов и философ XIII в., писал:
Существование актуального бесконечного множества невозможно, ибо любое множество вещей, которое мы себе представляем, должно быть множеством некоего вида. К тому же множества вещей определяются числом вещей в них. Однако никакое число не бесконечно, ибо числа порождаются пересчетом множества единиц. Следовательно, никакое множество вещей не может ни быть актуально бесконечным по своей природе, ни случайно стать бесконечным.
Обсуждение бесконечности всегда было близко к проблемам богословия. В V в. христианский философ Августин Аврелий писал в своей наиболее знаменитой работе «О граде Божьем», что бесконечность должна быть оставлена исключительно для божественного разума. Он с презрением отзывался о тех, «которые говорят, что бесконечное не может быть понято даже божественным ведением»:
Что же касается другого их мнения, согласно которому бесконечное не может быть объято даже божественным ведением, то им остается дерзнуть утверждать, что Бог не знает всех чисел, и погрузиться, таким образом, и в эту бездну глубокого нечестия. […] Кто даже из самых безрассудных людей скажет это? […] Кто такие мы, людишки, дерзающие положить предел Его ведению?[120]
Средневековый философ Орем, который обдумывал идею о том, что за небесным сводом, окружающим нашу Вселенную, может существовать бесконечное пространство, также умело обращался и с математическими бесконечностями. Именно он первым доказал тот удивительный факт, что если складывать дроби 1 + 1/2 + 1/3 + 1/4 + …, то можно получить сколь угодно большой результат. Ему также одному из первых пришла в голову идея о возможности сравнения размеров разных бесконечностей. В самом деле, если сравнить бесконечность всех чисел[121] и бесконечность четных чисел, то каждому целому числу можно сопоставить его удвоенное значение. Однако, поскольку множество четных чисел, очевидно, является меньшим подмножеством множества всех чисел, Орем заключил, что сравнение бесконечностей – дело небезопасное.
Несколько веков многие считали, что рассуждения такого рода доказывают невозможность реального существования бесконечности. Английский священник и математик XIV в. Томас Брадвардин использовал похожую идею, чтобы доказать, что мир не вечен. Он рассуждал так: если мир вечен, то число женских душ и число всех душ должны быть бесконечными. Если они бесконечны, их можно соотнести друг с другом. Но тогда не останется места для мужских душ. Таким образом, предположение о бесконечности числа душ приводит к противоречию.
И несколько столетий спустя бесконечность все еще чрезвычайно сильно беспокоит математиков. Галилей столкнулся с затруднениями, похожими на проблемы Орема и Брадвардина, когда рассматривал число квадратов целых чисел. С одной стороны, чисел, которые не являются квадратами, явно больше, чем квадратов. Квадраты – 1, 4, 9, 16, 25, … – встречаются чем дальше, тем реже, и между каждыми следующими двумя квадратами располагается все большее количество неквадратов. Но, с другой стороны, разве каждое число не является квадратным корнем из некоего числа-квадрата? С этой точки зрения можно сказать, что каждому числу можно сопоставить (его) квадрат, откуда следует, что количество квадратов должно быть равно количеству всех чисел.
Галилея, как ранее Орема, это привело в замешательство. Как он писал в книге «Беседы и математические доказательства, касающиеся двух новых отраслей науки»,
[…] рассуждая нашим ограниченным разумом о бесконечном, мы приписываем последнему свойства, известные нам по вещам конечным и ограниченным. Между тем это неправильно, так как такие свойства, как большая или меньшая величина и равенство, неприменимы к бесконечному, относительно которого нельзя сказать, что одна бесконечность больше или меньше другой или равна ей[122].
Общеизвестный сейчас символ, представляющий бесконечность, появился вскоре после смерти Галилея. Символ ∞ впервые использовал в 1655 г. английский математик Джон Валлис. Он выбрал именно такую форму, чтобы выразить идею возможности бесконечного прохождения по кривой[123]. В течение следующих двух веков математики вполне свыклись с идеей потенциальной бесконечности, но не с идеей бесконечности, действительно существующей, которая, казалось, порождала слишком много трудностей. Математик XIX в. Карл-Фридрих Гаусс писал своему коллеге Генриху-Христиану Шумахеру:
Прежде всего я возражаю против использования бесконечной величины как чего-то законченного, что ни в коем случае недопустимо в математике. Бесконечность – не более чем façon de parler[124].
А затем, в конце XIX в., произошел интеллектуальный сдвиг. Благодаря работе конечного разума одного человека бесконечность вдруг оказалась достижимой. Для Георга Кантора бесконечность не была всего лишь манерой выражаться. Она была осязаемым математическим объектом: