litbaza книги онлайнРазная литератураВсё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 202
Перейти на страницу:
тел под действием притяжения одного центра. Они же объединены свойством совершенно иного типа: они и только они (и в специальном случае – прямая) возникают как пересечение плоскости и конуса. Конус – это поверхность, которая образуется, если свернуть в воронку лист бумаги, но с одним уточнением: математический конус продолжается по обе стороны от вершины, как видно уже на рис. 1.7a. Если теперь пересечь конус плоскостью, которая перпендикулярна оси симметрии, то в сечении получится окружность. Наклоняя плоскость, мы получаем в сечении разнообразные эллипсы – всё более вытянутые по мере того, как наклон плоскости увеличивается (рис. 1.7b), – до тех пор, пока наклон не станет таким же, как наклон образующей конуса. В этом случае (рис. 1.7c) в сечении получается парабола (в некотором роде, как мы говорили, эллипсов много, а парабола одна; здесь эта идея выражается в том, что парабола возникает при точно обозначенном угле). Наклоняя плоскость еще сильнее, получаем в сечении гиперболы – разные в зависимости от угла наклона (рис. 1.7d). Здесь требуется небольшое пояснение: каждая гипербола имеет две части, потому что плоскость задевает и верхнюю, и нижнюю половины конуса. Говоря о гиперболе как о траектории движения, имеют в виду одну ее половину (которую тогда тоже называют гиперболой).

Почему три вида кривых, и только они, оказались решением двух столь различных задач (задача Кеплера и конические сечения) – вопрос, который нельзя было не задать некоторое число раз за те триста с лишним лет, как этот факт выяснился (конические сечения как таковые были известны в Древней Греции). Эллипс, кроме того, геометрически полностью симметричен относительно двух фокусов, что видно уже из построения с ниткой, показанного на рис. 1.1; но в Солнечной системе нет никакой «нитки», которая указывала бы планете, как двигаться, а сила действует на планету всегда и только в сторону одного из фокусов. Как же геометрия возникает из закона тяготения? Самый простой ответ: она получается как решение уравнений. Этот ответ, однако, никак не проясняет механизм, а из-за того, что уравнения здесь дифференциальные, он не относится к числу «элементарных». Есть ли элементарное решение, т. е. такое, которое позволяет перевести одну задачу (нахождение орбиты) в другую (построение конического сечения), причем делает это «непосредственно» и без использования математических средств типа дифференциального исчисления? Такое элементарное решение известно; в частности, ему посвящена «забытая» лекция Фейнмана – забытая на фоне других, прочитанных им в Калтехе и вошедших в «Фейнмановские лекции по физике». Однако Фейнман предваряет рассуждения таким предупреждением:

Элементарное вовсе не означает легкое для понимания. Элементарное означает, что для понимания не требуется почти никаких предварительных знаний, кроме бесконечно развитых умственных способностей.

Две «разные» параболы. Параболы оказались ответами в двух задачах: «планета» (частный случай движения вокруг центра притяжения, скажем Солнца) и «стрела», или, выразительнее, «камень» (движение, начинающееся под углом к горизонту вблизи земной поверхности). Одна и та же математическая кривая вполне может оказаться решением уравнений, записанных для различных систем, при разных предположениях. В задаче «планета» предполагается, что сила притяжения убывает при увеличении расстояния – «обратные квадраты», как это записано в (1.1). Парабола может тогда получиться в качестве решения при тщательно подобранных начальных условиях. В задаче «камень» предполагается другое: вблизи земной поверхности сила притяжения практически постоянна; поэтому можно спокойно пренебречь тем, как она убывает по мере подъема над поверхностью. В такой постановке задачи траектория брошенного тела – всегда парабола (разумеется, если убрать весь воздух – например, перенести эксперимент на Луну и там от души пострелять из рогатки), за очевидным исключением случаев бросания строго вверх и строго вниз. Если все же проявить дотошность и решить задачу про камень, не забывая, что притяжение ослабевает с высотой (и меняет направление по мере смещения вдоль земной поверхности!), то траектория от старта до падения окажется частью очень вытянутого эллипса – очень коротким отрезком его дуги вблизи его верхней части. На рис. 1.8 изображена часть эллипса, вытянутого несравненно слабее, чем тот, на который можно запустить камень любыми подручными средствами, но рисунок передает идею: небольшая дуга эллипса практически совпадает с параболой. Траекторией является только та часть каждой кривой, которая находится над поверхностью Земли, и, пока максимальная высота подъема мала по сравнению с радиусом планеты, участок эллипса неотличим от параболы. Поэтому вблизи поверхности Земли можно считать, что брошенные под углом к горизонту тела летят по параболе. Это Галилей и установил.

Рис. 1.8. Часть эллипса (светло-серая линия) и часть параболы (темно-серая линия), которые неразличимо близки около вершины. Широкой линией показана поверхность Земли. Только участки кривых, которые лежат выше нее, могут быть траекториями брошенных тел, а в этой части эллипсы очень похожи на параболы, пока они достаточно близки к поверхности

Точная парабола возникает в задаче о стрельбе с поверхности Земли, когда притяжение Земли учитывается «по-настоящему», в соответствии с законом тяготения Ньютона, а скорость имеет строго определенное значение. Если вы стреляете из суперпушки, расположенной на поверхности, то при достаточной скорости снаряда, посланного под углом к горизонту, он отправится путешествовать вокруг Земли, описывая эллипс. Если скорость выстрела еще увеличить, то наступит момент, когда снаряд уйдет от Земли неопределенно далеко. Минимальную скорость, при которой это происходит, называют второй космической скоростью или параболической скоростью. Это минимальная скорость освобождения: та скорость, которую необходимо придать телу, чтобы оно преодолело гравитацию, например, Земли и улетело «совсем». Движение тогда происходит по параболе! (Разумеется, если запустить снаряд быстрее, то он тем более улетит от Земли – но уже не по параболе, а по гиперболе.)

Парабола – траектория самого неторопливого расставания

Гравитация и заряды. Царица Вселенной – гравитация – это самая слабая из четырех фундаментальных сил. И одна из двух дальнодействующих. Вторая дальнодействующая – электромагнетизм, и, чтобы оценить, во сколько раз одна сильнее или слабее другой, можно сравнить силу, с которой два расположенных на определенном расстоянии электрона отталкивают друг друга электрически, и силу, с которой они притягиваются гравитационно. Гравитационное притяжение слабее электрического отталкивания примерно в 4 100 000 000 000 000 000 000 000 000 000 000 000 000 000 раз. Это большое число раз, независимо от вашего определения слова «много». Намеки на эту огромную разницу повсюду вокруг нас: когда я держу в руках груз весом 10 кг, сила химических связей между молекулами в моем теле (которые в основе

1 ... 8 9 10 11 12 13 14 15 16 ... 202
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?