Шрифт:
Интервал:
Закладка:
Уравнения движения для одной планеты можно решить точно
*****Больше чем Кеплер. Ко временам Ньютона законы Кеплера можно было воспринимать как экспериментальный факт, т. е. результат наблюдений. Привнесенные в эту историю Ньютоном математика и дополнительная догадка о том, как действует гравитация, воспроизвели эллипсы для планет. Три закона Кеплера перестали быть разрозненными высказываниями и приобрели логическую связь между собой: все три оказались следствиями закона движения и закона тяготения. Слово «следствие» здесь означает математическую неизбежность: если верны второй закон Ньютона и закон тяготения Ньютона, то никак по-другому планеты двигаться не могут[18]. Точнее говоря, могут, но только не совсем планеты (которые одни только и входили в предмет вычислений Кеплера), а тела, прилетающие извне Солнечной системы и улетающие куда-то прочь из нее. Здесь произошло очередное маленькое чудо: с помощью логического анализа (математики) познание вышло за текущие пределы наблюдений. Математический вывод законов Кеплера в большой степени поддержал уверенность в том, что и догадки по поводу законов неплохи, и математика выбрана правильно. А затем та же математика стала для нас проводником, указывая на новые, ранее не наблюдавшиеся виды движения. Для тел вблизи Солнца их оказалось три (вместе с эллипсами), если не считать движения по прямой точно в направлении Солнца[19]. И буква, и дух метода исследования мира по схеме «причина – следствие» говорят, что нет никакой возможности принять одни выводы и отказаться от других – неважно, что другие виды движения не наблюдались. Вот все виды движения под действием притяжения к центральному телу (рис. 1.5).
Рис. 1.5. Орбиты: эллипс, гипербола и парабола
Эллипсы. Во-первых (Кеплер был абсолютно прав!), эллипсы: математически точные эллипсы. Движение в разных частях эллипса происходит быстрее или медленнее точно так, как это утверждал Кеплер, вот только после Ньютона это утверждение перестало быть отдельным законом природы, а стало следствием закона движения и закона тяготения. Точно так же и третий закон Кеплера потерял самостоятельность.
Для Кеплера имеющиеся орбиты планет были уникальными. Для Ньютона, получившего контроль над тем, как эти эллипсы вырастают из законов и начальных условий, очевидно, что эллипсы могут быть очень разными: сильнее или слабее вытянутыми («совсем не вытянутый» эллипс – это попросту окружность). Математически тот или иной эллипс, по которому движется планета, определяется начальными условиями: тем, в каком направлении и с какой скоростью планета двигалась в выбранный «начальный» момент. Чтобы предсказать поведение реальных планет, надо взять эти начальные условия из наблюдений (определить скорость может оказаться сложнее, чем определить положение; но нужно и то и другое). Решение уравнений движения с такими начальными условиями дает в точности те траектории, которым реальные планеты и следуют, и мы уверенно предсказываем, что с ними будет в будущем[20]. Для воображаемой планеты начальные условия можно выбрать любыми, и эллипсы получатся самые разные: например, сильно вытянутые. Настоящие планеты в Солнечной системе таких вытянутых эллипсов не демонстрируют, но и здесь оказалось, что если математика показывает наличие решения определенного вида, то стоит поискать его в физическом мире. Кометы – это тела, которые движутся по сильно вытянутым орбитам (не каким-то, а именно эллипсам, пока они не портятся за счет прохождения вблизи массивных планет). При движении по вытянутому эллипсу тело проводит бо́льшую часть времени далеко от Солнца, где его не разглядеть, и лишь за короткое время и с высокой скоростью пролетает вблизи Солнца. Именно тогда комета становится видна с Земли (которая, не будем забывать, и сама достаточно близка к Солнцу – примерно в 10 раз ближе, чем Сатурн, самая дальняя из известных во времена Ньютона планет, и в 30 раз ближе, чем Нептун)[21].
«Начала» Ньютона вышли в 1687 г., а в 1705-м его уравнения были использованы для предсказания, причем с размахом на полвека вперед: в 1758 г. будет наблюдаться комета. Эта комета сейчас называется 1P/Halley. В этом обозначении 1P указывает на ее порядковый номер (один!!) и ее «периодичность», а Halley – это в русской традиции Галлей, хотя точнее было бы Хэли или Холи. (Пример другой кометы: 67P/Churyumov – Gerasimenko; здесь пусть англоговорящие мучаются с тем, как произнести.) Галлей – современник Ньютона, сыгравший немалую роль в том, чтобы «Начала» вообще увидели свет, – не открыл свою комету, он «всего лишь» заявил, что кометы, наблюдавшиеся ранее, в частности в 1531, 1607 (при Кеплере!) и 1682 гг., – это одна и та же комета. Заявление не было произвольной догадкой, но подтверждалось результатами вычислений того, как большие планеты влияют на орбиты комет (как именно они портят те самые вытянутые эллипсы). На основе вычислений, пользуясь законами Ньютона, Галлей и предсказал следующее появление кометы в 1758 г. Сбывшееся предсказание означало бы, что в Солнечной системе есть по крайней мере одно тело, не являющееся планетой, которое обращается вокруг Солнца.
Галлей скончался за 16 лет до установленного им срока возвращения кометы и был лишен возможности переживать «в реальном времени», сбудется или не сбудется его предсказание, – а переживать было от чего. Указанный им 1758 год прошел без кометы, точнее, почти прошел: комета объявилась практически в последний момент, 25 декабря. Увидел ее 35-летний саксонский фермер и астроном-любитель Палич. Его жизненная стезя определялась унаследованными им обязанностями по ведению фермерского хозяйства, и в юности ему приходилось скрывать свою любовь к астрономии[22]. Вообще-то я не думаю, что Галлей хоть сколько-нибудь сомневался, что его комета вернется и будет возвращаться. После трех полных оборотов вслед за своим появлением в 1758–1759 гг. комета вернулась в 1986-м, но я упустил свою возможность ее увидеть. Она приблизилась к Солнцу, но оказалась по другую сторону от него, чем Земля, что создало худшие условия для ее наблюдения с Земли за последние 2000 лет. Надеюсь, многие из моих читателей используют свой шанс в 2061-м. Целый класс комет – с периодом обращения от 20 до 200 лет – называют кометами галлеевского типа; типичная такая комета появляется во внутренней области Солнечной системы один-два раза за одну человеческую жизнь.
1 января 1801 г. на небе обнаружилось неизвестное до того тело. Автор открытия (астроном Пьяцци, католический священник из Палермо) продолжал наблюдения до начала февраля, когда ему пришлось прервать их из-за болезни. К сентябрю,