litbaza книги онлайнРазная литератураВсё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 202
Перейти на страницу:
«сильной» приходится довольно радикально менять взгляды на устройство тяготения (прогулка 6), но в Солнечной системе мы окружены «медленными» и «слабой», за одним-единственным астрономическим исключением: это движение планеты Меркурий вокруг Солнца, которое очень немного, но все же отличается от предсказанного по Ньютону (и которое у нас будет еще много поводов обсудить). Эти отличия свидетельствуют, что закон тяготения в форме (1.1) все же не является точным. Средства наблюдений, имевшиеся во времена Ньютона, не позволяли заметить отклонения в движении Меркурия, но у Ньютона были независимые основания для некоторого беспокойства за свой закон тяготения, исходя из того, что мы сейчас бы назвали проблемой передачи информации. Предположим, что Солнце по какой-либо причине внезапно начинает двигаться с ускорением в направлении какой-нибудь выбранной звезды. (Реализовать такое крайне непросто, но это не запрещено законами природы, а физические законы должны корректно описывать явления вне зависимости от того, в людских ли силах эти явления осуществить.) Спрашивается, как скоро Земля почувствует изменения в силе притяжения со стороны Солнца? Каким образом Земле передастся информация о том, где Солнце? Проблема с законом тяготения в виде формулы (1.1) в том, что если продолжить применять ее «как написано» (а что еще делать?!) и в этом гипотетическом случае, то мы вынуждены будем заключить, что изменения силы притяжения передаются к Земле (и вообще куда угодно) мгновенно. Это называется «действие на расстоянии»: эффект мгновенно передается через пустоту. Действие на расстоянии определенно не нравилось Ньютону:

Тот факт, что гравитация должна быть внутренним, существенным образом присуща материи так, чтобы одно тело воздействовало на другое на расстоянии через пустоту без посредничества чего бы то ни было еще, способного передавать воздействие или силу от одного тела к другому, представляется мне таким колоссальным абсурдом, что, как я полагаю, никто со сколько-нибудь развитым пониманием философских вопросов в него не впадет. Гравитация должна вызываться каким-либо агентом, действующим постоянно и в соответствии с определенными законами; но вопрос о том, быть этому Агенту материальным или нематериальным, я оставил на Усмотрение моих читателей[16].

Ньютон подозревал наличие Агента

Судя по этому фрагменту (который кажется мне гениальным из-за намека на совершенно неизвестную в то время форму материи – поле), Ньютон понимал, что отгаданный им закон не может быть последним словом в описании гравитации. Тем не менее ему пришлось постулировать закон природы, в котором говорится о силе гравитационного притяжения между двумя малыми кусками массы в зависимости от разделяющего их расстояния, но вообще ничего не сообщается о том, как гравитация распространяется через пространство – грубо говоря, как «движется» сама гравитация (в нашем изложении эта история тоже далеко впереди). Для всех тел Ньютон сформулировал закон движения, в котором ключевую роль играет изменение (количества движения) во времени, но в его законе гравитации не предусмотрена возможность какого-либо изменения гравитации во времени, потому что время вообще не участвует в формулировке этого закона (это статический закон). Ньютон не мог не видеть этого недостатка своей теории, но никаких данных, которые хотя бы отдаленно подсказывали, в каком направлении искать ответ, в то время не было. Hypotheses non fingo[17].

*****

Уравнения движения. Закон природы «сила – это темп изменения количества движения» традиционно называется вторым законом Ньютона. Его еще часто называют уравнением движения или уравнениями движения. Вот как получается уравнение, например, для Марса. Солнце притягивает Марс с силой, которая зависит от расстояния между Марсом и Солнцем. Но оно-то и неизвестно, ведь задача как раз и состоит в том, чтобы узнать, как положение планеты зависит от времени. А как мы вообще применяем уравнения для решения задач? Мы делаем вид, что неизвестное нам известно, обозначаем его какой-нибудь буквой (например, но совершенно не обязательно, x) и стараемся переписать условие задачи, используя эту букву. В случае с Марсом мы поступаем точно так же, только буква кодирует не неизвестное нам число, а неизвестное нам поведение, т. е. функцию времени. (И таких букв/функций вообще-то три, когда движение происходит в трехмерном пространстве.) Условие задачи, которое надо использовать, чтобы составить уравнение, – это и есть второй закон Ньютона: мы совершаем с неизвестной функцией два разных действия, что дает две разные вещи, но их нужно приравнять. Во-первых, мы записываем выражение для силы; она зависит от расстояния, а потому и от искомого положения планеты по отношению к Солнцу. Во-вторых, мы берем темп изменения количества движения, в данном случае – темп изменения скорости планеты (умноженной на массу). Но сама скорость планеты – это темп изменения ее положения. Итак, мы выразили две разные величины через (пока неизвестное) положение планеты, изменяющееся со временем. Ньютон же говорит нам, что эти две разные величины равны друг другу. Все, что происходит в мире, происходит так, что они совпадают. Поэтому мы принимаемся за выяснение, как должно себя вести положение планеты в зависимости от времени, чтобы записанное равенство действительно было равенством. Это и выражают словами «решить уравнения движения».

Разумеется, не все стрелы летят по одной и той же параболе даже в отсутствие сопротивления воздуха, а планеты не сидят все на одной-единственной эллиптической орбите. Кроме собственно закона движения, важно и то, как я запустил стрелу (куда направил и с какой скоростью) и где именно находился и с какой скоростью двигался Марс, скажем, в 00:00:00 GMT 1 января 2000 г. Эти данные удачно называются начальными условиями. Они включают положения и скорости всего, что движется, в некоторый момент времени, который условно считается начальным. Решая уравнения движения для конкретных систем, мы каждый раз задаемся какими-то начальными условиями. Для разгоняющегося самолета это положение в начале полосы и нулевая скорость. Используя уравнения движения с учетом тяги, сопротивления воздуха в зависимости от скорости и подъемной силы в зависимости от скорости, мы можем определить, где и когда самолет оторвется от полосы.

Для сложных систем, как правило, ответ невозможно выразить в виде функции времени, записанной на бумаге обозримым образом. В таких случаях говорят, что «уравнения движения нельзя решить точно», но в этой фразе нет никакого глубокого философского смысла; это довольно технический момент, к тому же стимулирующий развитие как приближенных математических методов, так и компьютерных вычислений. Но для одинокой планеты, обращающейся вокруг звезды, по прекрасному математическому везению уравнения движения можно решить точно, и именно

1 ... 4 5 6 7 8 9 10 11 12 ... 202
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?