litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 136 137 138 139 140 141 142 143 144 ... 482
Перейти на страницу:
в пороге активации нейрона и параметрах синаптических связей, не требуют пересылки по перегруженной общей шине устройства. При симуляции нейронной сети фон-неймановская машина вынуждена выполнять расчёт сигналов в каждом нейроне последовательно, что сильно замедляет процесс симуляции. Даже в современных параллельных архитектурах число вычислительных ядер на порядки меньше количества ячеек памяти. Чтобы преодолеть это неприятное ограничение, необходимо создание машин с принципиально иной архитектурой. Те архитектуры, которые подражают строению биологических нейронных сетей, называют нейроморфными. Более подробно мы поговорим о них позже, когда будем обсуждать современные проекты в этой области.

Конечно, и архитектура фон Неймана в некотором роде подражает человеческому мозгу. Ведь она была создана фон Нейманом в том числе под влиянием работ Мак-Каллока и Питтса. Поэтому граница между классическими и нейроморфными архитектурами в какой-то степени условна. Можно говорить о той или иной степени нейроморфности какой-либо архитектуры. Но всё же в большинстве случаев более или менее очевидно, к какому именно из полюсов тяготеет то или иное устройство.

Розенблатт не был единственным исследователем, проводившим на стыке 1950-х и 1960-х гг. опыты в области создания нейроморфных машин. В 1960 г. профессор Бернард Уидроу и его аспирант Тед Хофф из Стэнфордского университета разработали ADALINE (Adaptive Linear Neuron, или позднее Adaptive Linear Element, адаптивный линейный нейрон / адаптивный линейный элемент) — однослойную искусственную нейронную сеть и физическое устройство, реализующее эту сеть, основанное на элементах, получивших название «мемисторы» (не путать с мемристорами!).

Сначала Уидроу, как и Розенблатт, моделировал нейронную сеть при помощи потенциометров — переменных резисторов, регулируя сопротивление каждого из них вручную. Но для того, чтобы реализовать в такой схеме возможность самообучения, необходимо было осуществлять вращение ручек автоматически. В этой ситуации Розенблатт сделал ставку на использование электромоторов. Уидроу же ухватился за идею, подсказанную ему Норманом Абрамсоном из Гавайского университета. «Почему бы не сделать это химически, электрохимически, — сказал Абрамсон своему коллеге в одном из разговоров, — как это делается в мозге?»

Основываясь на этой идее, Уидроу придумал принципиальную схему устройства, названного мемистором (от memory — память и resistor — резистор, поскольку по сути элемент был резистором с памятью).

По замыслу Уидроу, мемистор должен был представлять собой банку, наполненную электролитом, с двумя погружёнными в неё электродами. Чтобы изменять сопротивление между ними, Уидроу предполагал использовать третий электрод, подведение тока к которому должно было каким-то образом менять химический состав раствора и тем самым изменять его сопротивление. Однако конкретных мыслей о том, какие химические вещества использовать, на какую именно реакцию полагаться и как быстро можно изменять сопротивление, у учёного не было.

На помощь пришёл Тед Хофф, который хорошо разбирался в химии. Хофф сразу понял, что будет очень сложно изменить сопротивление электролита. Вместо этого он предложил использовать гальванизацию.

Хофф и Уидроу взяли лист бумаги, мягкий карандаш, провели на листе линию длиной несколько сантиметров и при помощи омметра замерили её сопротивление. Затем они взяли немного раствора сульфата меди в серной кислоте и нанесли его поверх графитной линии — после добавления электролита сопротивление уменьшилось в 1000 раз. После этого они погрузили в нанесённый на поверхность линии раствор медный электрод и, пропустив ток, смогли добиться осаждения небольшого количества меди поверх графита, что снизило сопротивление ещё примерно в 100 раз.

Исследователи хотели добиться обратного эффекта (удаления меди с поверхности) путём обращения направления электрического тока, но, пока они возились с оборудованием, кислота проела бумагу, и вся конструкция развалилась. Однако сам принцип уже был понятен, и Уидроу принялся за дело. Он взял омметр и отправился с ним в книжный магазин. Подойдя к прилавку, он сказал продавщице:

— Я хотел бы купить грифели для карандашей!

— Да, сэр. Посмотрите в витрине, там полно разных типов грифелей.

— Я хотел бы купить тот, который имеет самое высокое электрическое сопротивление.

— Прошу прощения?..

Уидроу вкратце обрисовал продавщице суть, она вытащила грифели из коробки и позволила ему заняться измерениями. Победителем стал грифель Fineline Type H, предназначенный для механического карандаша, — он выдал рекордные 9 Ом от одного конца до другого. Уидроу и Хофф взяли этот грифель, поместили один конец грифеля в зажим, окунули другой конец в раствор сульфата меди в серной кислоте, погрузили туда медный электрод и включили электрический ток. Вытащив и ополоснув грифель, учёные увидели отличное покрытие из меди на его кончике — твёрдое как камень.

Затем таким же образом медь была нанесена на другой конец грифеля. Экспериментаторы припаяли к медным оконцовкам грифеля два куска провода с пластмассовой изоляцией, покрыли места пайки лаком для ногтей, который Уидроу попросил у жены, — это было сделано, чтобы припой не растворился в серной кислоте. Затем учёные поместили грифель в лабораторную пробирку (оставив концы проводов снаружи), туда же опустили оголённый медный провод и наполнили пробирку уже знакомым раствором. В итоге у них получилось устройство с тремя выведенными наружу электрическими контактами. Подавая в разных направлениях ток между медным проводом и грифелем, можно было добиваться как осаждения меди на поверхности грифеля, так и её удаления оттуда, что позволяло изменять сопротивление грифеля в пределах от 9 до 0,25 Ом.

Именно из таких элементов и был собран ADALINE. Обучение было организовано при помощи несложной электросхемы, реализующей алгоритм, получивший название LMS (Least Mean Squares, алгоритм наименьших средних квадратов)[1233], — один из ранних вариантов стохастического градиентного спуска[1234]. Информация, накопленная искусственными нейронами ADALINE, была воплощена в различной толщине слоя меди на поверхности графитных стержней.

Позже в одном из интервью Уидроу так описывал события того времени: «Мы знали о Розенблатте только из газетных заметок о его работе. Она была сенсационной темой для прессы. Через некоторое время и наша работа также стала сенсационной. Некоторые из людей, занимающихся в Стэнфорде связями с общественностью, однажды организовали мою пресс-конференцию. Там была целая комната, полная репортёров, и я демонстрировал самообучающуюся машину. Это было довольно удивительно для 1960 года. Никто не знал, что это, чёрт возьми, такое и что можно с этим делать. Мы тоже не знали, что с этим можно делать»[1235].

Как в перцептроне Розенблатта, так и в ADALINE искусственный нейрон выполняет две операции: суммирование входящих сигналов и подстановку их в некоторую функцию, называемую пороговой функцией или функцией активации. В качестве пороговых Розенблатт и Уидроу использовали функции, которые могли принимать одно из двух значений (обычно 0 или 1). Если аргумент функции превышал некоторое пороговое значение, то сама она принимала значение, равное верхнему порогу (обычно 1), в противном случае — нижнему порогу (обычно 0). Пороговая функция в перцептроне

1 ... 136 137 138 139 140 141 142 143 144 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?