Шрифт:
Интервал:
Закладка:
Симптомы болезни Паркинсона: сильный тремор, ригидность мышц, неустойчивость, трудности с координацией движений – обусловлены гибелью нейронов, вырабатывающих дофамин. Электрическая стимуляция, к сожалению, не воскрешает эти нейроны, но, по‐видимому, максимизирует выброс дофамина теми, что остались в живых. То есть речь идет не о полном излечении болезни, но все‐таки о серьезном улучшении качества жизни пациентов. Если у вас есть под рукой интернет, обязательно посмотрите на Ютюбе какой-нибудь ролик по запросу Parkinson deep brain stimulation, это правда потрясающее зрелище.
Несколько лет назад вживление электродов в субталамическое ядро пациентов с болезнью Паркинсона было официально одобрено FDA[81]. В ключевом исследовании[82], на которое опирались эксперты, электроды вживили 136 пациентам, страдавшим от выраженных двигательных нарушений по крайней мере в течение 6 часов в день. Те из них, кому повезло попасть в экспериментальную группу (а не в контрольную, не получавшую стимуляции), сообщили о том, что время, в течение которого они чувствовали себя хорошо и не испытывали серьезных проблем с координацией движений, возросло в среднем на 4,27 часа в день, – а это серьезный выигрыш в качестве жизни.
Болезнь Паркинсона – не единственная медицинская проблема, с которой может помочь справиться глубокая стимуляция мозга. Ее можно также применять для лечения эпилепсии (и здесь тоже уже есть одобрение FDA), а исследования проводятся и для ряда других заболеваний: обсессивно-компульсивного расстройства, синдрома Туретта, депрессии, биполярного аффективного расстройства и головной боли[83]. Во всех случаях это крайняя мера, к которой обращаются тогда, когда перепробовали все остальные методы и ничего не помогло. Во всех случаях речь идет не об абсолютном излечении, а об ослаблении симптомов. Вживление электродов – далеко не рядовая повседневная процедура, она требует очень высокой квалификации врачей и не бывает полностью безопасной. Но сама возможность такого лечения напоминает нам, что мозг – материален. Если в нем есть проблема, то во многих случаях возможно найти, где она локализована, и подействовать на этот участок, чтобы он начал работать по‐другому. Это непросто и вряд ли когда-нибудь станет просто, но это осуществимо уже сегодня.
Важно помнить и другое. Вживленный электрод – в прямом смысле палка о двух концах. С его помощью можно подавать электрические импульсы, чтобы изменить работу какого‐то участка мозга, а можно, наоборот, регистрировать те паттерны электрической активности, которые мозг генерирует совершенно самостоятельно. Это важно не только для исследований мозга, но и для решения медицинских задач. Например, для создания роботизированных протезов, которыми можно управлять напрямую с помощью собственного мозга.
В 2004 году молодой американец Тим Хеммес ехал на мотоцикле и попал в аварию. В результате все его конечности оказались парализованы. Но он не впал в уныние: в видеорепортаже Питтсбургского университета он приезжает в лабораторию хоть и в инвалидном кресле, но зато в хорошей компании: его сопровождает дочь, родившаяся незадолго до катастрофы (уже школьница), и ее мама. В комнате для экспериментов Тима ждет еще и его девушка Кэти. Неудивительно, что у него получается поддерживать хорошие отношения со всеми, потому что даже в интервью, посвященном его роботизированной руке, он фокусируется именно на эмоциональном контакте с близкими, на том, как важно для него самому обнять дочь и самому протянуть руку Кэти – в первый раз за всю историю их отношений.
Такая возможность появилась у парализованного Тима благодаря исследованиям нейробиолога Энди Шварца и его коллег. Еще в 2008 году они научили обезьян манипулировать роботизированной рукой с пятью степенями свободы (вращение плеча в трех плоскостях, сгибание локтя, хватательное движение кисти) достаточно эффективно, чтобы брать кусочки еды и класть их себе в рот[84]. На самом деле учить требовалось не столько обезьян, сколько компьютер, который должен был расшифровывать сигналы, поступающие от моторной коры, и передавать их на шарниры роботизированной руки таким образом, чтобы обезьяна действительно могла делать то, что хочет. Получилось неплохо: уже в первый день тренировки обезьяна успешно донесла еду до рта в 67 попытках из 101 предпринятой.
В случае Тима адаптация к роботизированной руке заняла больше времени и дала меньше возможностей. Во-первых, в его случае электроды не вживляли в кору, а фиксировали на поверхности мозга. Во-вторых, обезьяна не переставала пользоваться собственной рукой, а вот Тим попал в лабораторию только через семь лет после автокатастрофы. Работа началась с того, что ему делали функциональную магнитно-резонансную томографию, показывая видео движений руки; он должен был мысленно представлять, как повторяет их. Это позволило понять, как Тим управляет движениями плеча и локтя, чтобы правильно разместить электроды для кортикографии – 32 платиновых диска на силиконовом лоскуте размером 2 на 4 сантиметра – поверх моторной коры. В течение месяца после этого он учился правильно думать о движениях. Он смотрел видеозаписи движений и пытался мысленно их повторять. Наблюдал за собственной электрокортикограммой и учился целенаправленно вызывать в ней всплески активности. Учился двигать силой мысли курсор на экране компьютера в двухмерном и в трехмерном пространстве. Только после этого ему передали управление рукой – и тренированный Тим действительно сразу смог указывать ею на нужные объекты и протягивать ее своей девушке.
На этом, собственно, его возможности заканчивались. В ходе самого первого эксперимента, в 2011 году, Тима не пытались научить даже совершать хватательные движения кистью. Только плечо и локоть, только силиконовый лоскуток с электродами на поверхности мозга, без углубления в кору. “Мы намеревались только провести быструю демонстрацию, а более интенсивные исследования были невозможны из‐за ограниченной длительности эксперимента”, – невозмутимо поясняют исследователи[85].
Что происходит дальше именно с Тимом, неизвестно: публичность его не вдохновила, и с момента первого испытания роботизированной руки он, по‐видимому, общался со СМИ всего один раз, когда собирал деньги на новый микроавтобус для своей семьи. По научным статьям его судьбу тем более не проследить: в них не указывают имена участников исследований. Но в целом лаборатория Энди Шварца процветает и регулярно публикует отчеты о новых успехах. В 2013 году ученые представили широкой общественности своего следующего пациента, Джен Шерман. Ей вживили в моторную кору две пластинки с микроэлектродами, по 96 штук на каждой. Это позволяет записывать сигналы с гораздо более высокой точностью, так что через 13 недель тренировок Джен свободно управляла роботизированной рукой с семью степенями свободы (движение и вращение в трех плоскостях, плюс захват предметов)[86], а через 17 недель те же электроды позволили ей овладеть уже другим протезом, с десятью степенями свободы (включающими разные положения пальцев)[87]. На видеозаписях, которыми исследователи щедро сопровождают свои статьи, видно, как Джен перекладывает с места на место разнообразные мелкие предметы, строит пирамидки, вытряхивает мячик из стакана в чашку, а еще – на радость журналистам – подносит ко рту плитку шоколада и откусывает от нее.