litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 191 192 193 194 195 196 197 198 199 ... 482
Перейти на страницу:
PwC в оценке степени вероятного влияния ИИ на экономику 2030 г., оценивая вероятный вклад ИИ в 13 трлн долларов[1814] (напомним, что оценка PwC составляет 15,7 трлн долларов). Оценка Международного телекоммуникационного союза (International Telecommunication Union, ITU) составляет 15 трлн долларов (правда, они оценивают в 7 трлн долларов негативные экстерналии[1815] и транзакционные издержки от этого; в основном к их числу относятся расходы на переобучение людей)[1816]. В общем, аналитики демонстрируют в своих прогнозах завидное единодушие. Но что ещё более важно, они сходятся в характеристике текущего вклада технологий ИИ в мировую экономику, оценивая его в 1,5−2 трлн долларов. Реальные плоды технологий ИИ наблюдает сегодня каждый из нас.

Давайте подробнее рассмотрим прогресс, достигнутый в различных отраслях в ходе новой весны искусственного интеллекта.

6.2 Машина распознаёт образы

Гляжу с обычным умиленьем

На ваши кроткие черты,

И сердце светлым вдохновеньем

Наполнил образ красоты.

Какой обмен несправедливый!

Вдруг получить издалека

Вам, юной, свежей и красивой,

Печальный образ старика!

Афанасий Фет. Л. И. Офросимовой при посылке портрета

Распознавание образов [pattern recognition] — это отрасль ИИ, которая занимается автоматическим обнаружением закономерностей в данных и решением задач классификации и регрессии найденных закономерностей.

Распознавание образов часто понимается как распознавание только изображений, но на самом деле это не так: дело в том, что слово «образ» в русском языке не совсем точно соответствует английскому pattern. У этого слова довольно много значений — «узор», «шаблон», «образец», «структура», но так уж вышло, что в отечественной научной традиции принято говорить именно о распознавании образов, а само направление называть теорией распознавания образов.

Данные, в которых имеются те или иные закономерности, могут иметь самую разную природу: это могут быть оцифрованные изображения, звуки, видео, тексты, сигналы различных датчиков (температуры, давления, перемещения и т. д.) — словом, что угодно, что может быть подано на вход машины. Одно лишь перечисление задач, относящихся к области распознавания образов, заняло бы наверняка не одну сотню страниц. Поэтому здесь мы рассмотрим лишь некоторые типичные задачи, по прогрессу в решении которых принято судить об успехах всей области. Хотя предположение о том, что прогресс в решении отдельных задач распознавания должен сопровождаться прогрессом в решении других задач, выглядит вполне разумным, однако на деле всё может оказаться не так просто. Мы знаем, например, что машины довольно быстро научились идеально играть в крестики-нолики, но безупречный автоматический игрок в шашки появился лишь спустя полвека. Возможность применения для распознавания образов тех или иных алгоритмов и моделей во многом зависит от характеристик данных, и прежде всего от их размерности. Одно дело отличить крестик от нолика на монохромной картинке размером 3 × 3 пикселя (здесь вполне можно обойтись набором составленных вручную правил), и совсем другое — распознать котика на цветной 10‑мегапиксельной фотографии. Важным достижением новой весны ИИ стал существенный прогресс в ряде задач, относящихся к реальному миру, то есть таких задач, которые приходится решать людям в ходе различных производственных процессов. При этом нередко системам искусственного интеллекта удавалось превзойти людей. Это особенно важно в силу того, что в итоге была открыта дорога к автоматизации решения многих задач, решаемых людьми в повседневной жизни.

Для оценки прогресса в решении подобных задач специалисты в области ИИ обычно создают публичные стандартизованные наборы данных, которые позволяют оценивать точность работы различных моделей, а также точность выполнения задач людьми. Мы уже упоминали MNIST — один из подобных наборов, содержащий множество пиксельных образов рукописных цифр. Задача распознавания цифр из этого набора стала тривиальной на границе тысячелетий, поэтому сегодня для оценки прогресса в области распознавания изображений принято использовать более сложные наборы данных. Сегодня, благодаря усилиям сообщества, разработчикам моделей распознавания образов доступны сотни, если не тысячи наборов данных, содержащих изображения, аудио- и видеозаписи, тексты, различные мультимодальные данные (например, наборы изображений, снабжённых текстовыми описаниями, и т. п.)[1817], [1818], [1819] и так далее. Более того, регулярно проводятся соревнования по решению различных задач в области распознавания образов, в том числе онлайн — на таких сервисах, как Kaggle, Driven Data, CrowdANALYTIX и др. Причём благодаря появлению облачных платформ, предоставляющих доступ к высокопроизводительным тензорным процессорам (Google Colab, Amazon AWS или отечественный «Кристофари» от Сбербанка), участникам соревнований необязательно даже иметь в собственности дорогое оборудование для обучения моделей. Словом, по сравнению с 1990-ми гг. решительно изменились почти все элементы инфраструктуры, задействованные в сфере распознавания образов, и плоды этих изменений не заставили себя ждать.

6.2.1 Распознавание изображений

Любите живопись, поэты!

Лишь ей, единственной, дано

Души изменчивой приметы

Переносить на полотно.

Николай Заболоцкий. Портрет

30 сентября 2012 г. свёрточная нейронная сеть, известная сегодня под названием AlexNet, с существенным отрывом заняла первое место в конкурсе ILSVRC 2012 (ImageNet Large Scale Visual Recognition Challenge, Соревнования по широкомасштабному распознаванию изображений ImageNet). Считается, что именно это событие стало отправной точкой для очередного витка общественного интереса к сфере ИИ. Авторы The Economist в статье под названием «От бездействия к действию нейронных сетей» (From not working to neural networking, содержит игру слов not working/networking) так охарактеризовали общественную реакцию на это событие: «внезапно было привлечено внимание людей не только из ИИ‑сообщества, но и из технологической отрасли вообще»[1820].

Ежегодные соревнования ILSVRC начали проводиться с 2010 г., однако в 2010 и 2011 гг. нейросетевые модели не участвовали в соревнованиях, а первые места доставались моделям на базе метода опорных векторов (SVM) с различными трюками вроде фишеровских векторов[1821], [1822], [1823]. Таким образом, 30 сентября 2012 г. можно выбрать в качестве даты начала новой весны ИИ, хотя её наступлению предшествовало множество других важных событий. В первую очередь речь идёт о создании самого датасета ImageNet, что было непростой задачей, учитывая тот факт, что по размеру он многократно превосходил все созданные ранее датасеты, а также его многоуровневую систему аннотаций.

В современных популярных статьях по истории нейронных сетей, по всей видимости в силу особенностей самого формата, картина обычно выглядит следующим образом: жил-был Ян Лекун, который изобрёл свёрточные нейронные сети и в 1998 г. показал их эффективность на датасете MNIST. Спустя 12 лет как чёртик из табакерки или, будет правильнее сказать, как фея из сказки появляется Фей-Фей Ли из Стэнфорда, создаёт базу изображений ImageNet, а спустя ещё

1 ... 191 192 193 194 195 196 197 198 199 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?