Шрифт:
Интервал:
Закладка:
A + (B – A) + (C – B) + (D – C) + (E – D – 1) + (10 – E) = 9
что и требовалось доказать.
В самом начале этой книги мы говорили о том, как посчитать сумму всех чисел от 1 до 100. И мы справились – у нас получилось 5050. Также мы нашли замечательную формулу для подсчета суммы первых n. А почему бы теперь не поискать произведение чисел от 1 до 100? Даже по примерным прикидкам результат получится просто гигантским! Если вам интересно, скажу: это число, состоящее из 158 знаков. Вот оно:
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000
В этой главе вы увидите, как использовать такие огромные числа для счета. Они помогут нам узнать, сколько существует способов расставить на книжной полке дюжину книжек (примерно полмиллиарда), какие у вас шансы собрать хотя бы одну пару в покере (не такие уж и маленькие) или выиграть в лотерее (не такие уж и большие).
Когда мы перемножаем все числа от 1 до n, для обозначения произведения мы используем n! что читается как «факториал числа n». Другими словами,
n! = n × (n – 1) × (n – 2) ×… × 3 × 2 × 1
Например,
5! = 5 × 4 × 3 × 2 × 1 = 120
Мне кажется, символ восклицательного знака подходит здесь как нельзя лучше: значение числа n! увеличивается очень быстро и, как мы увидим чуть позже, таит в себе много удивительного. Для удобства математики определяют значение 0! = 1. А еще n! не определяется, когда n – отрицательная величина.
Отступление
Казалось бы, 0! должен быть равен 0. Но это почему-то не так: 0! = 1. Давайте разберемся, почему. Обратите внимание, что для n ≥ 2 n! = n × (n – 1)! а значит
Если мы хотим, чтобы наше утверждение оставалось верным для n = 1, нам понадобится
Итак, факториалы растут очень и очень быстро. Посмотрите сами:
Насколько велики эти числа? Ученые говорят, что количество всех-всех песчинок в мире равняется 10²². А количество всех-всех атомов во Вселенной – 1080. Так вот, если вы тщательно перемешаете колоду из 52 карт (что, как мы чуть позже узнаем, может быть сделано 52! способами), шансы на то, что в таком порядке они сложатся впервые со времен изобретения карт и никогда больше не сложатся снова, близки к 100 %. И это при условии, что все люди на Земле каждую минуту на протяжении нескольких миллионов лет будут тасовать каждый свою колоду.
Отступление
В начале главы вы, скорее всего, заметили, каким огромным количеством нолей заканчивается факториал 100! Откуда они берутся? При перемножении чисел от 1 до 100 мы получаем ноль всякий раз, когда умножаем число, кратное 5, на число, кратное 2. Первых в промежутке от 1 до 100 будет 20, вторых (по сути, всех четных) – 50, что, по идее, дает нам в конце 20 нолей. Но ведь числа 25, 50, 75 и 100 дают нам дополнительные коэффициенты пятерки, поэтому 100! будет иметь в итоге 24 ноля.
Как и в главе 1, здесь мы увидим несколько замечательных математических закономерностей, в которых используются факториалы. Вот, например, одна из моих любимых:
Большинство проблем с вычислением на самом деле сводятся к двум правилам – суммы и произведения. Правило суммы используется, когда нужно подсчитать общее количество имеющихся у вас вариантов выбора. Допустим, у вас есть 3 рубашки с короткими рукавами и 5 рубашек – с длинными. Но наденете-то вы только одну. Значит, вы стоите перед выбором одного из 8 вариантов. Обобщая, можно сказать, что, если у вас есть два типа объектов и количество объектов первого типа равно a, а объектов второго типа – b, всего у вас будет a + b разных объектов (естественно, предполагая, что ни один из объектов типа b не повторяется в типе a).
Отступление
Как уже было сказано, правило суммы исходит из того, что в двух типах объектов каждый объект уникален. Но если у нас все же есть несколько объектов (в количестве c), принадлежащих к обоим типам, не считать же их дважды, правда? Значит, формулу придется немного изменить: a + b – c. Например, если в классе у 12 учеников есть собаки, у 19 – кошки, а у 7 – и собаки и кошки, получается, что общее количество учеников, держащих только одно животное, будет 12 + 19 – 7 = 24. Если перевести это в плоскость чистой математики, в промежутке от 1 до 100 у нас получится 50 чисел, кратных 2; 33 числа, кратных 3; и 16 чисел, кратных как 2, так и 3 (ну или кратных 6). Значит, количество чисел, кратных либо 2, либо 3, нужно подсчитывать так: 50 + 33 – 16 = 67.
Правило произведения применяется в том случае, когда вам нужно предпринять некое действие, которое состоит из двух частей. Если имеется a вариантов выполнения первой части и b вариантов второй, то для всего действия имеется a × b вариантов. То есть если у меня есть 5 разных пар брюк и 8 различных рубашек и если я (как и большинство математиков) при этом не особо озабочен вопросами стиля и сочетания цветов, общее количество возможных комбинаций составит 5 × 8 = 40. А если я еще решу надеть один из 10 своих галстуков (то есть мое действие будет состоять уже из трех частей: галстук, брюки и рубашка), комбинаций станет уже 40 × 10 = 400.