litbaza книги онлайнДомашняяМагия математики. Как найти x и зачем это нужно - Артур Бенджамин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 19 20 21 22 23 24 25 26 27 ... 89
Перейти на страницу:

Если ваш продавец мороженого предлагает 20 разных сортов, то, направляясь туда с намерением купить 5 разных шариков (в случайном порядке), вам придется выбирать из

Магия математики. Как найти x и зачем это нужно

вариантов. Кстати, если на вашем калькуляторе не предусмотрено специальной кнопки, чтобы подсчитатьМагия математики. Как найти x и зачем это нужно просто наберите в любом поисковике «число сочетаний из 20 по 5»[8], и вы увидите веб-калькулятор с готовым ответом.

Биноминальные коэффициенты, впрочем, могут появляться и там, где порядок расположения объектов определенную роль все же играет. Если вы 10 раз подбросите монетку, сколько всего у вас будет возможных последовательностей результатов (вроде О-Р-О-Р-Р-О-О-Р-Р-Р или О-О-О-О-О-О-О-О-О-О)? Так как каждый бросок имеет два возможных исхода, правило произведения говорит нам, что их будет 210 = 1024, причем шансы выпадения каждой стороны абсолютно равны. (Некоторые, конечно, удивятся: вероятность того, что выпадет вторая комбинация, вроде бы куда ниже, чем у первой. Тем не менее шансы и у той, и у другой абсолютно равные – 1 к 1024.) С другой стороны, то, что за 10 бросков орел выпадет 4 раза, а не 10, куда вероятнее, ведь комбинаций с 4 орлами много, а с 10 – всего одна. Вот только «много» – это сколько? Подобная последовательность определяется количеством «орлиных» бросков, равным 4 из 10, соответственно, остальные броски должны закончиться выпадением решки. Количество способов определить, какие именно 4 из 10 бросков дадут нам орла, равноМагия математики. Как найти x и зачем это нужно (все равно что выбирать 4 разных шарика мороженого из 10 сортов). Значит, наш шанс, что из 10 попыток 4 раза выпадет орел, если бросать симметричную, абсолютно уравновешенную монетку, равен

Магия математики. Как найти x и зачем это нужно

или примерно 20 % всех возможных комбинаций.

Отступление

Логично спросить, сколько можно собрать вазочек с 3 шариками из 10 сортов, если можно повторяться (10³/6 – ответ неправильный, это ведь даже не целое число). Наиболее простой способ – рассмотреть 3 отдельных случая, взяв за отправную точку количество разных сортов в вазочке. Очевидно, что в случае с 3 шариками одного сорта получится 10 вазочек. Из сказанного выше понятно, что в случае с 3 шариками 3 сортов получитсяМагия математики. Как найти x и зачем это нужно вазочек. АМагия математики. Как найти x и зачем это нужно вазочек будут с 2 сортами мороженого, ведь 2 сорта мы можем выбратьМагия математики. Как найти x и зачем это нужно способами. И лишь потом можно решать, какие 2 из 3 шариков будут именно этого сорта. Сложив все вместе, получим 10 + 120 + 90 = 220 вазочек.

Есть и другой способ прийти к этому ответу, не разбивая задачу. Каждую вазочку можно представить как комбинацию трех звездочек и девяти черточек. Если мы выбираем первый, второй и снова второй сорта, «перекодированная» вазочка будет выглядеть вот так:

Магия математики. Как найти x и зачем это нужно

Второй, снова второй и седьмой сорта – вот так:

Магия математики. Как найти x и зачем это нужно

А комбинация

Магия математики. Как найти x и зачем это нужно

будет означать, что наш выбор пал на сорта третий, пятый и десятый. То есть вазочка – это набор из 3 звездочек и 9 черточек. Всего получается 12 символов, 3 из которых обязательно должны быть звездочками. Следовательно, возможных комбинаций у нас будетМагия математики. Как найти x и зачем это нужно Обобщая, можно сказать, что количество способов выбрать k объектов из множества n при произвольном порядке и с возможностью повторения равно количеству способов сочетания k звездочек и n – 1 черточек –Магия математики. Как найти x и зачем это нужно

Магия математики. Как найти x и зачем это нужно

Подсчет сочетаний необходим в большинстве задач, в которых большую роль играет случайность. Представим себе лотерею, в которой вам нужно угадать 5 различных чисел от 1 до 47. Дополнительно вы выбираете еще одно, МЕГАчисло от 1 до 27 (можно выбирать любое, в том числе и одно из тех, которые уже встречались в пятерке). У нас есть 27 вариантов выбора дополнительного числа, иМагия математики. Как найти x и зачем это нужно вариантов выбора основных 5 чисел. Таким образом, общее количество равно

Магия математики. Как найти x и зачем это нужно

Другими словами, ваш шанс выиграть главный приз в такой лотерее – примерно 1 из 40 миллионов.

Теперь давайте переключим внимание на покер. Комбинация в покере – это обычно 5 карт из 52, составляющих колоду. Все они разные, выбраны случайно, порядок их значения не имеет. Следовательно, количество комбинаций равняется

Магия математики. Как найти x и зачем это нужно

1 ... 19 20 21 22 23 24 25 26 27 ... 89
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?