Шрифт:
Интервал:
Закладка:
Его построение основывалось на так называемом принципе Гюйгенса: каждая частица, попадающая в световой фронт, сама становится фронтом. Проводя аналогию с домино, распространение начинается с падения одной кости, и каждая падающая кость заставляет падать другие, передавая возмущение в виде веера. В трехмерном пространстве столкновения можно увидеть на разрезе окружности:
«...каждая частица вещества, в котором распространяется волна, должна сообщать свое движение не только ближайшей частице, лежащей на проведенной от светящейся точки прямой, но необходимо сообщает его также и всем другим частицам, которые касаются ее и препятствуют ее движению. Таким образом вокруг каждой частицы должна образоваться волна, центром которой она является».
![Гюйгенс. Волновая теория света. В погоне за лучом Гюйгенс. Волновая теория света. В погоне за лучом](https://pbnuasecond.storageourfiles.com/s18/92677/img/img_65.jpg)
РИС. 7
![Гюйгенс. Волновая теория света. В погоне за лучом Гюйгенс. Волновая теория света. В погоне за лучом](https://pbnuasecond.storageourfiles.com/s18/92677/img/img_66.jpg)
РИС. 8
Согласно этому принципу, зная фронт возмущения в определенный момент (t1), мы можем точно определить его в любое следующее мгновение (t2). Достаточно взять каждую точку предыдущего фронта (F1) за источник новых, вторичных сферических фронтов, которые постепенно распространяются вперед с радиусом r = v(t2 - t1). Получившийся фронт (F2) будет поверхностью, которая покрывает все сферы одновременно в том состоянии, в котором они находятся в каждый момент времени (см. рисунок 7). В некотором смысле фон из частиц эфира с их столкновениями служит физическим предлогом для использования метода геометрической реконструкции с его набором из линейки и циркуля, который позволяет изобразить распространение возмущения. Физика, разумеется, определяет такие параметры рисунка, как ширина раскрытия циркуля. Вторичные фронты распространяются не в точности так же, как первоначальное возмущение. Маленькие сферы не расширяются внутрь, в направлении источника света О. Каждая точка фронта F1 порождает вторичную волну, направленную только вовне, создавая F2. Волны, идущей внутрь, которая могла бы породить F2, не появляется (см. рисунок 8).
![Гюйгенс. Волновая теория света. В погоне за лучом Гюйгенс. Волновая теория света. В погоне за лучом](https://pbnuasecond.storageourfiles.com/s18/92677/img/img_67.jpg)
РИС. 9
![Гюйгенс. Волновая теория света. В погоне за лучом Гюйгенс. Волновая теория света. В погоне за лучом](https://pbnuasecond.storageourfiles.com/s18/92677/img/img_68.jpg)
РИС. 10
Надо уточнить, что этот эффект не накапливается, то есть по мере продвижения фронта его интенсивность не нарастает благодаря росту протяженности. В противном случае каждый раз, зажигая лампочку, мы видели бы, что свет от нее увеличивает свою интенсивность и в результате ослепляет нас. Если фронт появляется и угасает, то мы видим свет на мгновение, а потом он исчезает.
Одним из самых простых случаев, к которому можно применить принцип Гюйгенса, является распространение плоских и сферических волн (см. рисунки 9 и 10). Линии, перпендикулярные фронту волн (лучам в случае со сферами), образуют в геометрической оптике световые лучи. Построение Гюйгенса кажется немного громоздким и не до конца продуманным. Почему бы для определения вида нового фронта просто не провести прямую линию за другой или более широкую окружность на нужном расстоянии, в зависимости от скорости распространения света?
Однако этот принцип помогает построить фронты в менее однозначных ситуациях. Например, он позволяет вывести закон Снелля, определив значения числовой постоянной как коэффициент скоростей света в каждой среде. Возьмем плоскую границу между воздухом и стеклом (см. рисунок 11). Принцип Гюйгенса справедлив для обеих сред, но в воздухе (υα) скорость света больше, чем в стекле (υυ). Гюйгенс предлагает следующее объяснение этого различия:
«Благодаря тому, что несплошное расположение частиц прозрачных тел имеет указанный нами характер, легко видеть, что волны могут продолжаться в эфирной материи, наполняющей промежутки между частицами. Кроме того, можно думать, что продвижение этих волн должно происходить внутри тел более медленно вследствие тех маленьких изворотов пути, которые обусловливают сами частицы».
![Гюйгенс. Волновая теория света. В погоне за лучом Гюйгенс. Волновая теория света. В погоне за лучом](https://pbnuasecond.storageourfiles.com/s18/92677/img/img_69.jpg)
РИС. 11
Частицы эфира передают возмущение быстрее в разреженном воздухе, где они почти не встречают препятствий, по сравнению с пористым лабиринтом прозрачной материи. Чтобы включить в наше построение разность скоростей (υa и υυ), вторичные сферические волны должны иметь больший радиус в воздухе (ra) по сравнению со стеклом (rυ). Другими словами, раскрытие циркуля в одной среде будет больше по сравнению с другой. Мы можем предположить, что в воздухе ra = υa · t; в то время как в стекле rυ = υυ · t, где υa > υυ, поэтому в одинаковые промежутки времени ra > rυ.
НОВЫЙ ВЗГЛЯД НА ЗАКОН СНЕЛЛЯ
Соотношение между углами α и ß легко вычислить при помощи двух треугольников (см. рисунок 1). Первый соединяет А и D с точкой Е, которая находится на пересечении перпендикуляра, проведенного к фронту в воздухе, ограниченному D. Второй треугольник соединяет А и D с точкой F, которая находится на пересечении перпендикуляра, проведенного от А к фронту в стекле. Получаем:
sin α = 3ra/L, sin ß = 3rv/L
Разделим два синуса:
Sinα /sin ß = ra/rv = (va · t)/(vv · t) = va/vv.
![Гюйгенс. Волновая теория света. В погоне за лучом Гюйгенс. Волновая теория света. В погоне за лучом](https://pbnuasecond.storageourfiles.com/s18/92677/img/img_70.jpg)
РИС. 1
![Гюйгенс. Волновая теория света. В погоне за лучом Гюйгенс. Волновая теория света. В погоне за лучом](https://pbnuasecond.storageourfiles.com/s18/92677/img/img_71.jpg)
РИС. 2
Остается рассмотреть, являются ли углы α и ß теми же, что мы проводим в чертежах в рамках геометрической оптики, в которых ориентиром всегда служит вертикальная линия, а не горизонтальная граница. Для этого достаточно вспомнить, что две прямые образуют между собой тот же угол, что и перпендикулярные им. На рисунке 2 угол между прямыми а и b равен тому, что образуют соответствующие им перпендикуляры a и b. Следовательно, угол между прямыми АЕ и AD такой же, как и между их перпендикулярами. Перпендикуляр к АЕ — это луч 1, а перпендикуляр к АD — вертикальная линия.