Шрифт:
Интервал:
Закладка:
Та же, что и в геометрической оптике. Что касается угла между прямыми АD и FD, то ему также будет равен угол, образованный их перпендикулярами — вертикальной прямой и лучом 2.
ПОПЫТКА ГАЛИЛЕЯ
Сегодня всем известно, что в вакууме свет проходит за одну секунду 300 тысяч км. Однако на протяжении столетий вычислить это огромное значение было невозможно, и вплоть до эпохи Гюйгенса многие полагали, что свет распространяется мгновенно. Галилей предложил довольно дерзкий эксперимент по измерению скорости света. Опыт состоял в том, чтобы темной ночью поставить двух наблюдателей на вершинах двух холмов, расположенных на расстоянии нескольких километров друг от друга. У каждого из них была лампа с глазком, который открывался и закрывался, позволяя увидеть и сразу же скрыть свет. Галилей, открыв задвижку в своей лампе, сразу же запускал хронометр. Свет должен был преодолеть расстояние между холмами. Его помощник, увидев световой сигнал, зажигал в ответ свою лампу. Ее свет должен был пройти в обратную сторону и как только достигал Галилея, тот останавливал хронометр. Поскольку расстояние между холмами было известно, чтобы получить искомую скорость, нужно было просто разделить установленное время на 2d.
Портрет Галилея, приписываемый Франческо Аполлодоро.
Невозможное измерение
Однако опыт не удался. Как только Галилей открывал глазок своего фонаря, он тут же видел свет на соседнем холме. Единственная задержка во времени объяснялась промедлением самих экспериментаторов. Свет, словно угорь, ускользал из сетей Галилея. Он не предполагал, что даже если бы его хронометр мог отмерять десятые доли секунды, расстояние между наблюдателями должно было превышать диаметр Земли — только в этом случае они получили бы разницу во времени, которую можно измерить.
Повторим, что лучи света в геометрической оптике являются линиями, перпендикулярными к волновому фронту. Когда фронт касается точки А на границе, столкновение между частицами эфира вызывает распространение света в стекле. По прошествии некоторого времени воздушный фронт продвигается на длину радиуса ra и достигает пограничной точки B, вызывая в ней второй фронт сферических волн. Тем временем сферический фронт А расширился внутри стекла на меньший радиус, rυ. То же самое происходит, когда фронт затрагивает точки С и D. За каждый промежуток времени фронт в воздухе продвинется на расстояние ra, а фронт в стекле — на rυ.
В каждую секунду фронт в стекле является поверхностью, которая охватывает все сферы (окружности на рисунке). Это построение позволяет нам вычислить угол между направлениями, в которых распространяются лучи света в воздухе и в стекле.
Корпускулярная теория Ньютона объясняла преломление разной скоростью распространения света, но ее микроскопический сценарий был противоположным: согласно корпускулярной теории, скорость света была выше в более плотных средах. По Ньютону, свет является потоком частиц. Приближаясь к границе двух сред, частицы испытывают большее притяжение к более плотному материалу и ускоряются. Такое ускорение возникает только перпендикулярно границе, препятствуя распространению света внутрь фронта.
Чтобы высказаться за одну из этих моделей, следовало проверить каждую экспериментальным путем, но в XVII веке еще не существовало технических способов измерить скорость света в воздухе или стекле. Ученые смогли определить ее только в космосе при помощи астрономических наблюдений, вычислив распространение света в вакууме. Прошло сто лет после смерти Ньютона, прежде чем французский физик Леон Фуко в своей лаборатории обнаружил, что свет распространяется в воде медленнее, чем в воздухе. Корпускулярная теория переживала не лучшие времена и вновь ожила только после того, как Эйнштейн ввел в свое механико-квантовое описание света фотоны.
ХРОНОМЕТРАЖ СВЕТА
Аппарат, находящийся в точке А, каждые 10 секунд выстреливает мячом с постоянной скоростью V. Человек В, который стоит на расстоянии нескольких метров прямо перед аппаратом, через некоторое время ловит мяч; представим, что это время равно 2 секундам. Если В не двигается со своего места, то он будет ловить мячи с той же частотой, с которой А их бросает: каждые 10 секунд. Мячи не будут долетать до него мгновенно, но поскольку они затрачивают одно и то же время на преодоление одного и того же расстояния, регулярность А будет воспроизводиться и для В. Что произойдет, если В начнет отходить от А по прямой линии? Каждый последующий выбрасываемый мяч должен будет преодолеть все большее расстояние, следовательно, будет увеличиваться и затрачиваемое мячами время. Мяч долетит до В не за 2 секунды, а за 2,5 секунды, или за 3, или за 3,5 и так далее. Если бы В не осознавал, что отдалился, то ему казалось бы, что мячи долетают до него с опозданием. Как только он прекратит движение, регулярность восстановится. Если же через некоторое время В вновь сдвинется с места, на сей раз приближаясь к аппарату, то мячи каждый раз должны будут преодолевать все меньшее расстояние.
Оле Рёмер.
Охота за светом
Датский астроном Оле Рёмер наблюдал подобное явление между 1671 и 1676 годами. Он, правда, изучал не регулярное выбрасывание мячей, а затмение Ио, одного из спутников Юпитера, который заходил за саму планету. Поскольку орбитальный период Ио был регулярным, спутник должен был скрываться из виду в регулярные промежутки времени. Однако Рёмер установил, что в течение одного полугодия затмение наступало раньше, а в течение второго — позже. Другими словами, в течение шести месяцев Земля, двигаясь вокруг Солнца, приближалась к Ио, а в течение следующих шести месяцев — отдалялась. Со светом происходило то же самое, что и с мячом, летящим от А к В: время его движения зависело от расстояния до летящей в космосе Земли. Считается, что Гюйгенс впервые использовал значения временных промежутков, установленные Рёмером, чтобы высчитать скорость света. По его подсчетам, она равнялась 214000 км/с. Это вполне хорошее приближение, учитывая неточность имевшихся в то время данных о расстояниях между планетами.
РИС. 12
ПРИЧИНЫ ПОЯВЛЕНИЯ НЕОБЫЧНОГО ЛУЧА
Принцип Гюйгенса описывает и преломление света, но, несомненно, самым эффектным его применением является изящный анализ двойного лучепреломления. Ньютон с большим трудом попытался объяснить это явление в рамках корпускулярной теории, но в результате создал только очень запутанную формулировку, согласно которой у каждого луча было «четыре стороны или четверти, две из которых были причиной свойства, вызывающего необычное преломление, а другие две не имели к ней отношения».