Шрифт:
Интервал:
Закладка:
Итоговая оценка рассчитывалась на основе 1600–2400 реплик из 100 диалогов каждого из агентов. Осмысленность рассчитывалась как доля положительных ответов от общего числа ответов на вопрос о разумности реплик данного агента. Специфичность, соответственно, — как доля положительных ответов на вопрос о специфичности реплик агента от общего числа ответов на данный вопрос. Величина SSA была рассчитана как среднее арифметическое специфичности и осмысленности.
Поскольку расчёт значения этой метрики возможен лишь на основе опроса экспертов, её величина не годится в качестве целевой функции в процессе обучения модели. На эту роль подходит только полностью автоматизированная метрика, такая, например, как оценка способности модели предсказывать реплики диалогов, входящих в обучающую выборку. В случае Meena модель в процессе обучения стремилась минимизировать величину перплексии (perplexity)[2270], [2271]. Чем ниже перплексия, тем более уверенно модель предсказывает токены (символы, части слов или слова) последовательности. Величина перплексии для последовательности токенов равна единице, делённой на среднее геометрическое вероятностей каждого из токенов последовательности.
Рассмотрим это на примере. Допустим, в нашей обучающей выборке содержится единственный диалог:
— У вас продаётся славянский шкаф?
— Шкаф продан, могу предложить никелированную кровать с тумбочкой.
Предположим, нам нужно оценить перплексию ответов модели при генерации второй (ответной) реплики этого диалога. Токенизатор (т. е. алгоритм, применяемый для разбивки текста на токены) представил эту реплику в виде последовательности из 11 токенов: «шкаф», «продан», «,», «могу», «предложить», «никелированную», «кровать», «с», «тумбочкой», «.» и «<END>» (специальный токен, означающий окончание реплики). Начнём смотреть вероятности, которые наша модель прогнозировала для каждого из токенов при генерации последовательности слева направо. То есть какова, по мнению модели, была вероятность того, что реплика, отвечающая на вопрос «У вас продаётся славянский шкаф?», начнётся словом «шкаф»? Допустим, модель считала, что вероятность этого составляет 0,1. Теперь возьмём следующую вероятность, а именно вероятность того, что реплика, которая является ответом на вопрос «У вас продаётся славянский шкаф?» и начинающаяся при этом словом «шкаф», будет продолжена словом «продан»? Допустим, эта вероятность равна 0,5. Поскольку наша модель генерирует слова ответа одно за другим слева направо, мы на каждом шаге просто добавляем к предшествующей последовательности очередной токен и вновь «просим» модель предсказать распределение вероятностей для следующего токена, затем выбираем из этого распределения вероятность для токена, на самом деле встреченного на следующей позиции в последовательности, и так далее до конца последовательности. Положим, в итоге для наших 11 токенов мы получили следующий набор вероятностей: 0,1; 0,5; 0,8; 0,9; 0,9; 0,9; 0,9; 0,9; 0,9; 0,9; 0,9. Теперь перемножим их между собой и извлечём из результата корень одиннадцатой степени — получим примерно 0,69. Теперь разделим единицу на это число и получим итоговое значение — приблизительно равное 1,45, что и будет перплексией данной последовательности ответов модели. Легко заметить, что чем с большей вероятностью наша модель предсказывает токены, тем меньше итоговая величина перплексии. При стопроцентной вероятности для каждого из токенов последовательности итоговая перплексия будет равна единице. Если бы каждому из токенов соответствовала вероятность 0,5, то итоговая перплексия была бы равна двойке. По мере уменьшения вероятностей величина перплексии стремится к бесконечности. Высокая перплексия последовательности с точки зрения модели означает, что эта последовательность является «неожиданной» для модели, плохо согласующейся с её прогнозом. Например, модель, обученная на большом корпусе рекламных текстов, скорее будет ожидать последовательность «Мы удовлетворим даже самого требовательного клиента», чем «Бумага летать кольцо вперёд красный!». Поэтому первая фраза будет обладать низкой перплексией, а вторая — высокой.
Перплексию часто используют в качестве целевой функции при обучении языковых моделей, так что в данном случае создатели Meena не открыли Америку. Однако весьма поучительным открытием стало то, что величина перплексии сильно коррелирует (коэффициент детерминации R2 = 0,93) со значением SSA. Чем ниже перплексия модели, тем более высокое значение SSA получают ответы диалоговой модели при оценке их людьми.
Интересны итоги сравнения диалоговых реплик Meena по метрике SSA с ответами людей и других разговорных агентов. Уверенную победу в сравнении одержали люди с показателем SSA = 0,86. Лучшая из модификаций Meena смогла получить SSA = 0,79. Неоднократный (2013, 2016, 2017, 2018, 2019) победитель AI Loebner[2272] бот Mitsuku получил SSA = 0,56, а бот Xiaoice от Microsoft (по всей видимости, использовалась его англоязычная версия по имени Zo) — SSA = 0,31. Как видно из этого сравнения, новая модель от Google смогла преодолеть более половины разрыва в искусстве болтовни между людьми и чат-ботами[2273].
Поскольку публикация разработчиков BlenderBot вышла в свет позже статьи создателей Meena, исследователи Facebook решили сравнить свои результаты с результатами коллег из Google. Задача осложнялась тем, что, в отличие от создателей BlenderBot, авторы Meena не спешили выкладывать свою модель в свободный доступ, поэтому специалистам Facebook пришлось довольствоваться сотней опубликованных записей диалогов с участием Meena. Оценщикам-людям показывали пары диалогов, в одном из которых собеседником человека выступал BlenderBot, а в другом — Meena. При этом оценщикам задавали два вопроса: «С кем бы вы предпочли общаться в ходе длительной беседы?» (оценка привлекательности) и «Какой из собеседников общается более по-человечески?» (оценка человекоподобия)[2274], [2275]. По обеим метрикам победителем оказался BlenderBot (75 : 25 в оценке привлекательности и 67 : 33 в оценке человекоподобия).
Более того, BlenderBot неплохо смотрелся даже в сравнении с людьми: в одном из экспериментов оценщики отдали предпочтение диалогам с его участием при сравнении с диалогами «человек — человек» в 49% случаев. Впрочем, авторы бота пишут в своей статье, что далеки от мысли, что им удалось полностью решить задачу ведения диалога с открытой предметной областью[2276], [2277]. Не менее впечатляющих результатов удалось достичь исследователям