Шрифт:
Интервал:
Закладка:
Вопрос № 1 (В1): Какая грань у тебя верхняя?
Вопрос № 2 (В2): Где в точности ты находишься?
И кость может дать такие ответы:
Ответ № 1 (О1): У меня на верхней грани шестерка.
Ответ № 2 (О2): Мои координаты [широта, долгота, высота]: [27.1789335252, 78.0224962785, 1.232432].
Эта идея приводит нас к важному определению, имеющему далеко идущие последствия. Назовем квантовым состоянием физической системы полный набор определенных фактов, которые система, если ее спросить, сообщит о себе. Так, квантовое состояние нашего кубика будет определяться двумя ответами О1 и О2 и кратко записываться следующим образом: [О1; О2] = [6 ↑; 27.1789335252, 78.0224962785, 1.232432], где точка с запятой разделяет различные поставленные вопросы, на которые получены ответы.
Здесь ключевым обстоятельством является то, что эти ответы содержат всю определенную информацию, которую кубик должен предоставить. Это кажется совершенно тривиальным утверждением, но — внимание! — из этого утверждения о фундаментальной простоте системы следует огромное число результатов, противоречащих интуиции. Посмотрим, каких именно.
Во-первых, ясно, что есть разные состояния, в которых наша кость может находиться. Чтобы их описать, вообразим, что мы получили полный (включены все возможности) перечень взаимоисключающих ответов (только один из них может быть истинным для системы в каждый заданный момент времени) на каждый вопрос. Для кости это будет означать 6 возможностей в О1 — одна из шести граней вверху — и все ее (кости) возможные положения в ответах О2. Квантовое состояние кости может соответствовать любой одной паре из набора всех возможных ответов, и все возможные определенные ответы, которые может дать кость, находятся где-то в этом перечне.
Теперь мы подошли к ключевому моменту. Хотя мы включили в список всего два вопроса, что будет, если мы все-таки пойдем дальше и зададим еще один вопрос (назовем его В3) — например, какая сторона кубика смотрит на восток? И теперь у нас появилась головоломка: В3 — справедливый вопрос, соответствующий эксперименту, который мы можем реально провести. Мы можем взглянуть на кубик с востока и увидеть, какая грань обращена к нам. То есть кубик Должен дать нам ответ.
И он дает. Но ответ не может быть теперь определенным, не так ли? У нас уже есть исчерпывающий список вопросов, на которые мы получаем определенные ответы, и вопроса Вз в нем нет! Следовательно, должны быть ситуации, в которых ответом могла бы быть двойка, тройка или четверка. (Могла бы быть и шестерка, даже в том случае, когда мы знали бы, что шестерка на верхней грани, а не на восточной!) И это значит, что возникает неустранимая неопределенность в том, какой ответ даст наша игральная кость.
Это не значит, что все возможности одинаково вероятны. Квантовая механика дает очень прозрачное математическое правило (называемое правилом Борна) для определения того, насколько правдоподобен каждый ответ для данного состояния кубика. То есть оно дает возможность определить вероятность каждого ответа еще до проведения измерений.
Таким образом, вероятности появились в совершенно, казалось бы, простом вопросе о состоянии системы, о которой мы знаем все, что нужно знать.
Нам невероятно трудно представить физические вещи, которые в этом смысле принципиально просты. Когда мы представляем себе нашу действительно простую квантовую кость с шестеркой на верхней грани, мы, естественно воображаем неподвижный кубик, у которого грань (скажем) с четверкой смотрит на восток, с двойкой — на юг и т. д. Но это неправильно! Состояние покоя было бы свойством обладания нулевой скоростью, и ориентация на восток грани с четверкой — тоже была бы свойством. Однако кубик имеет только два свойства — его местоположение и определенная цифра на верхней грани. Это ограничение сильно противоречит нашей интуиции. Когда мы определяем свойство, которое некий объект может иметь, легко забыть, что это свойство изобретено нами, поскольку обычно, изобретая свойство, мы в глубине души уверены, что объект либо имеет это свойство, либо не имеет. И когда с этим свойством нам все становится ясно, то препятствия к переходу к другому свойству, и еще к одному, и еще… вроде как исчезают, и, похоже, явного предела количеству свойств, которые мы можем придумать, нет. Но квантовая реальность устроена иначе.
В квантовой механике существует красивый и точный способ описать все это, и называется он суперпозицией. Мы можем считать суперпозицией состояний набор «взвешенных» ответов на один вопрос, выраженных через ответы на другой вопрос. Например, для квантовой кости[43] состояние [ft], то есть один ответ на вопрос В1, есть то же самое состояние, что и сумма по состояниям, которые бы дали точные ответы на вопросы Вз относительно того, какая грань ориентирована на восток. Это можно записать так:
[5↑] = C1 [1→] + C2 [2→] + C3 [3→] + C4 [4→] + C5 [5→] +C6 [6→],
где направленные вправо горизонтальные стрелки означают направленность на восток, а C1… C6 — числа. Это выражение означает, что квантовое состояние [5↑] дает определенный ответ на вопрос В1, но содержит все шесть возможных ответов на вопрос В3. Вероятности находятся из чисел C1… C6, которые показывают, какую часть состояния [5↑] составляет каждое из состояний [1→],…[6→][44]. Вероятность, например, получить состояние [3→] при измерении оказывается равной 1/16. Таким образом, суперпозиция — это другой способ сказать, что какое-то свойство не определено, и система имеет чуть-чуть одного свойства и чуть-чуть другого. Но только одна из этих возможностей проявится при измерении.
Ну а что происходит после этого измерения? Мы уже знаем ответ на вопрос В3, поскольку только что его нашли. Следовательно, состояние кубика должно быть таким, которое бы имело определенный ответ на вопрос В3. И если бы мы измерили эту величину, эта часть состояния могла бы быть [3→], а полное состояние могло бы быть, например, таким: [О3; О2] = [3→; 27.1789335252, 78.0224962785, 1.232432]. Таким образом, мы определили, что если мы зададим системе вопрос, на который она готова дать определенный ответ, то получим этот ответ, никак не изменив систему (а только что-то узнав о ней). Но если мы задаем вопрос, на который система не готова дать определенный ответ, мы все равно получим какой-то ответ, и система, давая этот ответ, перейдет в состояние, в котором у нее будет определенный ответ на этот вопрос — как