litbaza книги онлайнРазная литератураКосмологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 27 28 29 30 31 32 33 34 35 ... 105
Перейти на страницу:
приписать одинаковую амплитуду. Ни один путь — ни прямой, ни тот, который диктуется классической физикой, ни какой-либо другой — по сути не имеет преимуществ перед другими, и бессмысленно говорить, что эта частица выбрала этот путь, а не другой. Эти пути определяют волновую функцию, которая определяет вероятности, дающие нам (неопределенные) ответы на вопросы, — типа вопроса о том, где мы оказались в конце.

И — однако — объекты движутся по прямым траекториям, определяемым соответствующими законами. И когда мы спрашиваем себя, как мы сюда попали, мы вспоминаем конкретный путь, которым пришли.

Но мы сделаны из частиц, которые движутся всеми возможными путями. Как же мы можем выбрать один-единственный путь?

14. Разделение миров

(Эдо, Япония, 1624 год)

В наступающей ночной мгле Муненори внимательно следит за глазами противника, его левым ахилловым сухожилием и мечом. Сосредоточив взгляд на пятимиллиметровом световом блике вблизи рукояти, он определяет угол поворота меча. Малейшее движение лезвия мгновенно выдает себя (блик становится ярче); от лезвия отражаются и попадают в правый глаз Муненори 958 фотонов.

Из всех фотонов, попадающих в глаз, 832 поглощаются в нем, не добравшись до сетчатки. Из оставшихся 126 фотонов 87 наталкиваются на 75 различных палочек в сетчатке, большинство оставшихся поглощается в колбочках, но не приводит к их возбуждению. В 70 палочках специальные молекулы поглощают фотоны, меняют форму и вызывают химические реакции, в результате которых посылается сигнал через несколько уровней нервных клеток, что возбуждают усиленные сигналы в 34 клетках, связанных с волокнами правого зрительного нерва Муненори. Эти волокна, в свою очередь, связаны со зрительной корой его головного мозга. Информация, которую они несут, невероятно сложным образом трансформируется, проходя через несколько дополнительных нейронных систем, что в конечном итоге приводит к тому, что Муненори за доли секунды оценивает диспозицию и замечает начавшееся движение меча противника вверх. Его анализ верен. Муненори ловко парирует, нанося ответный удар, и расправляется с врагом-убийцей.

Так ли это? В отраженном от меча блике может быть не только 958, но также и 959, и 957 фотонов. И также правда, что 124, 125, 127 и 128 из них попадет на сетчатку и поглотится в 69, 70, 71, 72, 73, 74, 76 и 77 палочках. Это приведет к передаче 31, 32, 33, 34, 35 и 36 сигналов в первичную зрительную кору. Однако 31, 32 и 33 сигналов недостаточно, чтобы Муненори заметил их в ту долю секунды, когда он принимал решение, и вместо ответного удара на удар снизу он готовится к удару сверху вниз. К сожалению, решение оказывается фатальным.

Так как же — Муненори жив или мертв, или и то, и другое? А ты, поскольку ты связал свою судьбу с его судьбой, — что делаешь ты?

Мы могли бы пойти еще дальше, проследив за химическими реакциями, которые формируют в нервных волокнах и в мозгу отклик на изображение, возникшее на сетчатке, чтобы в конце концов сказать: эти химические изменения в клетках его мозга и осознаются наблюдателем.

Джон фон Нейман «Математические основы квантовой механики»

Тибетские паломники научили нас, что квантовое состояние системы очень необычное. Оно позволяет нам вычислить вероятности того, что событие «произойдет», но не совсем так, как рассчитывается вероятность выпадения определенной грани кости в наших симуляциях. Кроме неизбежной неопределенности, квантовое состояние может связать исходы событий друг с другом иначе, чем мы привыкли делать это для обыкновенных объектов в повседневной жизни. Мы могли бы описать вероятности выпадения различных граней кости тем или иным способом, но в общем случае мы считаем, что их можно рассматривать независимо от результатов наших манипуляций с другой костью. Но с фотонами все не так: мы увидели, что результат прохождения фотонов через две щели не сводится к прохождению фотонов через одну или другую щель. Складывается реальное ощущение, что каждый фотон проходит одновременно через обе щели. Таким образом, хотя фотон довольно маленький объект (это мы определили по его воздействию на детектор), он одновременно и очень большое и целостное образование, простирающееся на огромное расстояние порядка расстояния между двумя щелями.

Исходя из этих необычных свойств квантового состояния, зададим себе интересный и важный вопрос: почему мы используем квантовую механику, когда описываем двухщелевой эксперимент с фотонами, и обращаемся к классической механике и теории вероятностей при описании объектов типа игральной кости (тибетские паломники составляют тут исключение)? Фотоны, летящие от меча в глаз Ягю Муненори, определенно нужно рассматривать в рамках квантовой механики, как и химические процессы в фоторецепторах глаза. А как насчет зрительных нейронов? Или нейронов в мозгу?

Квантовая механика возникла из-за того, что классическая физика была не в состоянии правильно описать некоторые системы. Возникают прагматические вопросы: что это за системы, и какие системы мы можем описывать без квантовой механики? Есть и более фундаментальный вопрос: существуют ли чисто квантовомеханические и чисто классические системы? Если фотон в некотором смысле проходит одновременно через обе щели, существует ли в реальности ситуация, при которой монах проходит одновременно через пару разных ворот, или при которой Муненори и одновременно отражает удар, и его разрубает меч врага? Или же монахи и самураи являются реально классическими системами, к которым мы применяем законы квантовой механики исключительно для того, чтобы предсказать исходы событий? Давайте разберемся с этими вещами, детально исследовав с точки зрения квантовой механики процесс, который идет с фотонами, попадающими в глаз Муненори.

Начнем с блика на мече. Блик состоит из некоторого количества фотонов, но, поскольку это квантовомеханическая система, их количество непременно будет не полностью определенным. То есть квантовое состояние этого блика является суперпозицией состояний, относящихся к разному числу фотонов из некоторого диапазона. Для примера допустим, что существуют только два состояния — с 957 и 959 фотонами, — и назовем эти состояния [957] и [959]. Таким образом, квантовое состояние блика будет суперпозицией этих двух состояний. Если мы сделаем размер шрифта пропорциональным «амплитуде» состояний (или их длине, если мы представим их в виде стрелок), то квантовое состояние блика после того, как он отразится от меча, можно записать в виде

[Состояние блика] = [957] + [959].

То, что шрифт у состояния [957] немного крупнее, означает, что если бы кто-нибудь, используя некий сложнейший прибор, мгновенно измерил число фотонов, он бы обнаружил, что вероятность получить 957 фотонов в блике составляет 6о %, а 959-40 %.

Теперь рассмотрим единичную клетку палочки сетчатки — ту, в которую может попасть один

1 ... 27 28 29 30 31 32 33 34 35 ... 105
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?