Шрифт:
Интервал:
Закладка:
Однако Чедвик был убежден, что эти частицы и есть нейтроны, которые он обсуждал с Резерфордом. Дальнейшие эксперименты показали, что их масса чуть превышает массу протона и именно эта новая частица, не имеющая заряда, оказалась тем ингредиентом, которого недоставало для согласования численных результатов. После открытия Чедвика казалось, что все кирпичики, из которых построена материя, наконец обнаружены.
Модель выглядела чрезвычайно привлекательно. Четыре «стихии» Аристотеля – огонь, земля, воздух и вода – были сведены к трем частицам: электрону, протону и нейтрону. Из этих трех кирпичиков, как считали ученые, можно построить всю материю. Кислород: 8 протонов, 8 нейтронов и 8 электронов. Натрий: 11 протонов, 12 нейтронов и 11 электронов. Как будто бы зазвучала музыка сфер, и в основе материи лежали эти три ноты – протоны, электроны и нейтроны. Вся материя, по-видимому, состояла из целочисленных комбинаций этих трех частиц. Какие были основания ожидать, что и сами эти частицы образованы из еще меньших составляющих? Если бы это было так, то можно было бы рассчитывать увидеть дробные сочетания, расположенные между элементами периодической системы.
Но деление на этом не остановилось. Оказалось, что существуют весьма основательные экспериментальные и математические доводы в пользу делимости протонов и нейтронов. Однако кирпичики, составляющие протоны и нейтроны, обладают одним странным свойством: они не любят находиться в одиночестве. Они встречаются только группами, образуя объекты, подобные протонам или нейтронам. Вместе им безопаснее. Но, если такие частицы никто никогда не видел поодиночке, почему же ученые считают, что такие, еще меньшие, части, на которые можно разделить протоны и нейтроны, существуют?
Все, что мы называем реальным, сделано из того, что реальным считать нельзя.
В конце 1920-х гг. казалось, что все основные кирпичики, из которых построена материя, обнаружены. Все атомы периодической системы можно построить из сочетаний электронов, протонов и нейтронов. Все попытки дальнейшего деления электрона были безуспешными. Но открытия, сделанные в следующие десятилетия, привели ученых к пониманию того, что под остальными двумя кирпичиками скрывается следующий уровень реальности.
Основной толчок к пониманию того, что протоны и нейтроны могут быть не столь неделимыми, как электрон, был дан не какой-нибудь более хитрой технологией, а математическими соображениями симметрии. Поразительно, что лучшим микроскопом для изучения внутреннего устройства моей игральной кости снова и снова оказывается математика. Для объяснения существования протонов и нейтронов разрабатывалась математическая модель, и она была основана на математической концепции, допускавшей деление. А раз математическое представление можно было разделить на более мелкие части, то казалось, что и к самим протонам и нейтронам должен быть применим тот же принцип.
Математическая модель, благодаря которой возникла идея о делимости протона и нейтрона, появилась, когда физики открыли, что в дополнение к трем составляющим элементам устойчивых атомов существует множество других частиц.
Их открыли в экспериментах по столкновениям частиц. Речь шла не о построенных человеком коллайдерах, подобных LHC[39], а о природных столкновениях, которые происходят в верхних слоях атмосферы при прохождении сквозь нее космических лучей.
Первое свидетельство существования новых частиц было найдено в камерах Вильсона, которые экспериментаторы использовали для восстановления траекторий заряженных частиц. Камера Вильсона состоит из герметичного бака, заполненного перенасыщенными парами воды и спирта. Перенасыщение паров приводит к тому, что любая пролетающая через камеру частица оставляет за собой конденсационный след.
В 1933 г. Карл Андерсон, физик, работавший в Калтехе[40], использовал такие камеры для подтверждения предсказанного за несколько лет до этого британским физиком Полем Дираком существования странного нового вида материи, называемого антивеществом. Предпринятая Дираком попытка объединения квантовой физики и теории электромагнетизма позволила объяснить многие особенности электронов, но его уравнения имели еще и полностью зеркальное решение, которое не соответствовало ничему, виденному до тех пор в лабораториях.
Уравнения Дирака были в некотором смысле аналогичны уравнению x2 = 4. У этого уравнения есть не только решение x = 2, но и зеркальное ему решение x = –2, так как (–2)2 тоже равно 4. Из зеркального решения уравнений Дирака следовало, что существует зеркальный вариант электрона, имеющий положительный заряд. Большинство считало это решение математическим курьезом, порожденным уравнениями, но, когда четыре года спустя Андерсон заметил в своей камере следы частицы, которая вела себя как электрон, отраженный в зеркале[41], антивещество перешло из теории в область реальности. Открытые Андерсоном позитроны, как их стали называть, возникли в результате взаимодействия частиц в верхних слоях атмосферы. И они не были единственными вновь появившимися частицами.
Вскоре после этого в камере оставили следы еще более странные частицы, вообще никем не предсказанные. В 1936 г. Андерсон начал анализировать эти новые следы вместе со своим аспирантом Сетом Неддермейером. Новые частицы, обнаруженные в камере Вильсона, были отрицательно заряженными. Но они не были электронами. Следы, оставленные этими новыми частицами, соответствовали значительно большей массе. Массу частицы можно определить по степени отклонения ее траектории в магнитном поле, в точности как это делал Томсон. Эта частица имела заряд, равный заряду электрона, но изогнуть ее траекторию было гораздо труднее.
Частица, называемая теперь мюоном, была одной из первых новых частиц, полученных из взаимодействия космических лучей с атмосферой. Мюон нестабилен. Он быстро распадается на другие частицы, чаще всего на электрон и два нейтрино. Нейтрино было еще одной новой частицей, существование которой было предсказано для объяснения распада нейтронов в протоны. Поскольку нейтрино почти не имеют массы и не имеют электрического заряда, они были экспериментально обнаружены лишь в 1950-х гг., но с теоретической точки зрения они были необходимы для объяснения распада как нейтронов, так и вновь найденных мюонов. Среднее время жизни мюона составляет 2,2 микросекунды, чего хватает, чтобы достаточное количество таких частиц достигло поверхности Земли не распавшись.