litbaza книги онлайнМедицинаБудущее медицины. Ваше здоровье в ваших руках - Эрик Тополь

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 124
Перейти на страницу:

Однако следует пояснить, что ароε4 – это аномальный вариант гена, он встречается достаточно часто (примерно у 20 % населения имеется хотя бы один такой ген) и несет в себе большой риск. Самые распространенные геномные варианты, т. е. представленные более чем у 5 % населения, несут в себе лишь малый риск. В отличие от них редкие варианты, присутствующие менее чем у 1 % населения, связаны с гораздо более существенным риском. Поскольку на сегодняшний день полногеномное секвенирование проводилось только у ограниченного количества людей, без учета разнообразных фенотипов или наследственности, нам еще предстоит долгий путь, чтобы обнаруживать значимые редкие варианты. Такие редкие геномные варианты повышенного риска представляют собой серьезный сигнал и особенно информативны для человека, а потому могут быть полезны для предупреждения определенного заболевания.

Но просто знать о риске недостаточно. Нам нужно знать, когда заболевание проявится. И именно здесь в игру вступают биодатчики. Если бы мы, например, знали, что у ребенка высокий риск развития бронхиальной астмы, то было бы идеально использовать датчики для выявления дыхательных проблем на начальном этапе, когда они только зарождаются, задолго до первых симптомов. Есть много заболеваний, когда мы знаем о геномном риске, но понятия не имеем о том, когда вмешаться, чтобы предотвратить развитие болезни.

Внедренные в кровь датчики, контактирующие со смартфоном хозяина (или в случае детей с устройством родителей), могут быть особенно полезными. С помощью геномик мы можем определить детей, имеющих высокий риск аутоиммунного диабета (типа 1). Мы также знаем, что требуется примерно пять лет, прежде чем критическая доля островковых клеток поджелудочной железы будет разрушена в результате аутоиммунных атак и диабет даст о себе знать. К настоящему времени уже разработаны крошечные нанодатчики для определения ДНК, РНК, белка и сигналов аутоантител. А что, если бы у нас в крови находился датчик, который определял бы активизацию иммунной системы, и в тот же момент иммунная система подавлялась бы подходящим лекарственным препаратом? Возможно, поджелудочную железу можно было бы спасти. Этот тип интервенции может помочь при ряде аутоиммунных заболеваний со спорадическими приступами, таких как рассеянный склероз, ревматоидный артрит или волчанка.

Предотвратить сердечный приступ поможет геномный сигнал в виде клеток, которые отслаиваются от стенок артерии (известных как циркулирующие эндотелиальные клетки), указывающий на подспудный процесс, который предшествует фактическому событию – формированию тромба в артерии, перекрывающего доступ крови к сердечной мышце. Точно зная о процессах, ведущих к сердечному приступу, можно дать человеку лекарственные препараты, предотвращающие формирование тромбов и вытекающие из этого последствия.

И мы знаем, что у людей с раковыми заболеваниями есть опухолевые ДНК, присутствующие в плазме. Можно проводить их мониторинг во время курса терапии и предотвратить необходимость дорогих исследований – позитронной эмиссионной томографии или компьютерной томографии, которые несут в себе высокий риск облучения. Однако вживленный биодатчик может обеспечить сплошное наблюдение, способное отследить рецидив опухоли, а в будущем, вероятно, даже обнаружить первые признаки опухоли задолго до того, как она наберет массу, заметную на сканограмме.

Точно так же привлекательна концепция «молекулярного стетоскопа». Если рассматривать не только бесклеточные ДНК, то транскриптом бесклеточной РНК имеет важный потенциал для определения значимых медицинских сигналов, как это недавно продемонстрировали наблюдения за беременностью и развитием плода или диагностирование болезни Альцгеймера33. В дальнейшем на протяжении всей жизни человека одна-единственная пробирка с кровью может использоваться для скрининга ДНК/РНК и служить еще одним измерением ГИС человека. Однако будут проблемы с интерпретацией данных. Мы вернемся к этой теме ниже, когда будем говорить о предсказательной аналитике.

Инфекционные болезни

Использование полногеномного секвенирования с картированием социальных сетей применялось для борьбы с многочисленными вспышками заболеваемости, связанными с такими патогенами, как клебсиелла пневмонии, метициллин-резистентный золотистый стафилококк, клостридии диффициле и туберкулезная палочка. Это был невероятный шаг вперед в понимании возникновения и передачи заразных болезней. Точно так же впечатляет цифровая наука образования сетей, которая дала важный показатель «эффективного дальнодействия» в качестве объяснения распространения инфекции (и он же относится также к слухам и инновациям)34.

Патогенное секвенирование может потенциально применяться не только для определения происхождения эпидемии. Тем не менее на сегодняшний день обычное обследование пациента с серьезной инфекцией включает взятие крови и других жидкостей организма на посев, двухдневное ожидание результатов и последующее определение чувствительности патогена к антибиотикам. А тем временем в этот двух– или трехдневный период ожидания пациент обычно получает большую дозу сильных антибиотиков широкого спектра действия, чтобы «охватить» все возможные патогены, которые могут служить причиной инфекции.

Чтобы понять спасительную силу секвенирования в случае инфекционных болезней, рассмотрим историю Джошуа Осборна, 14-летнего мальчика, который чуть не умер от мозговой инфекции. У него постоянно случались судороги, но диагноз ему поставить не могли, хотя сделали даже биопсию мозга и развернутый анализ крови на наличие патогенов35. Но секвенирование спинномозговой жидкости сразу же показало, что причиной является лептоспира, редкая бактерия, после чего он был успешно вылечен подходящим антибиотиком.

Благодаря использованию секвенирования наши обычные установившиеся практики лечения могут быть радикально изменены. Теперь есть «лаборатория на чипе» – платформы для секвенирования, которые могут быть интегрированы в смартфон или планшет. В будущем, вероятно, появится возможность легко и быстро провести секвенирование патогенов непосредственно во время осмотра. Надо надеяться, что это обеспечит более точное и раннее лечение сепсиса, который дает один из самых высоких показателей смертности.

Рак

Поскольку рак – это болезнь, корни которой уходят в геномику, то в данном случае особенно важны понимание и терапевтический подход. И действительно, с помощью секвенирования тысяч опухолей пациентов, вместе с гаметической (зародышевой) ДНК каждого человека, примерно в 200 генах, отвечающих за опухолевый рост, мы идентифицировали изменения, известные как мутации-водители (драйверы)5, 36. Большинство этих мутаций называются онкогенами; они могут непосредственно управлять формированием опухоли, и их можно лечить адресно лекарственными препаратами. Остальные – это изменения в генах-супрессорах опухолей, например, Р53. Такие лечить гораздо сложнее, поскольку именно утрата ими своих функций позволяет опухоли разрастаться. Лекарственные препараты для усиления биологической функции биологии клеток получить намного труднее, поэтому присутствие генов-супрессоров опухолей в качестве драйверов обычно означает, что нужен какой-то обходной путь, а не прямое воздействие на ген.

1 ... 25 26 27 28 29 30 31 32 33 ... 124
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?