Шрифт:
Интервал:
Закладка:
М. Ф.: Недавно в DeepMind смоделировали нейроны решетки, отвечающие за пространственную ориентацию. Это случай, когда одна и та же базовая структура естественным образом возникает как в мозге, так и в искусственных нейронных сетях.
Д. Х.: Это одно из наших крупнейших достижений за последний год. Нам написали Эдвард и Мэй-Бритт Мозер, которые в свое время получили Нобелевскую премию за открытие нейронов решетки. Они предположили, что эти нейроны дают оптимальный способ представления пространства при вычислениях. Теперь нейробиологи проверяют, статичны ли эти нейроны или модифицируются в структуру на ходу, что лучше всего подходит для самообучающейся системы.
Кроме того, недавно на базе наших ИИ-алгоритмов мы создали новую теорию о том, как может работать префронтальная кора головного мозга. Я думаю, со временем работа ИИ-алгоритмов заставит нас по-другому посмотреть на устройство мозга, поскольку является хорошим аналитическим инструментом для экспериментов. Через сравнение ИИ-системы с человеческим мозгом можно изучать природу сознания, творчества и сновидений.
М. Ф.: Вы считаете, что есть общие принципы интеллекта, не зависящие от среды, в которой он возникает?
Д. Х.: Именно так. Определение этих общих принципов даст ключ к пониманию человеческого мозга.
М. Ф.: Каким образом ваши достижения смогут применить на практике в ближайшем будущем?
Д. Х.: Вы уже пользуетесь множеством приложений. Это и машинный перевод, и анализ изображений, и компьютерное зрение.
Компания DeepMind начала работу над такими вещами, как оптимизация энергии в центрах обработки данных Google. Система преобразования текста в речь WaveNet теперь есть в помощнике Google во всех телефонах на платформе Android. ИИ применяется в системах рекомендаций, магазине Google Play и может в фоновом режиме экономить заряд аккумулятора в телефонах Android. Все эти вещи используются каждый день. И я думаю, что это только начало.
Надеюсь, через некоторое время мы начнем сотрудничать со сферой здравоохранения. Например, уже сейчас в известной британской офтальмологической больнице Moorfields мы диагностируем макулодистрофию по результатам сканирования сетчатки. Результаты первого этапа нашего партнерства опубликованы в журнале Nature Medicine. Они показывают, что наша ИИ-система интерпретирует результаты сканирования с беспрецедентной точностью. К тому же она дает рекомендации по лечению более 50 заболеваний глаз на уровне ведущих мировых экспертов. Существуют и другие команды, выполняющие аналогичную работу для таких заболеваний, как рак кожи. Думаю, что в течение следующих пяти лет наша работа сможет принести еще много пользы.
Но больше всего меня радует, что ИИ вот-вот начнут применять для решения научных проблем. Мы работаем над изучением механизма сворачивания белка, значит, сможем проектировать материалы и создавать лекарства. ИИ уже используют для анализа данных с Большого адронного коллайдера, для поиска экзопланет. Существует множество массивов данных, структуру которых экспертам определить трудно, и можно озадачить этим вопросом ИИ. Надеюсь, благодаря этому в следующем десятилетии нас ждут научные достижения в фундаментальных областях.
М. Ф.: Какие препятствия нужно преодолеть на пути к сильному ИИ?
Д. Х.: Эти вещи мы определили с самого начала работы DeepMind. Во-первых, это получение абстрактных, концептуальных знаний с последующим переносом обучения. Люди достаточно легко переносят свои знания из одной области в другую. Человек, получив задачу нового для себя типа, не начинает изобретать велосипед, потому что может использовать уже имеющиеся знания и опыт из других областей. Компьютерные системы в подобных случаях требуют множество данных и работают крайне неэффективно. Это нужно исправить.
Во-вторых, требуется улучшить понимание естественного языка, а также скопировать, используя новые техники, то, что умели делать старые системы ИИ, например символьные манипуляции. Прорывом станет решение именно этих проблем.
М. Ф.: Когда сильный ИИ появится, будет ли он обладать сознанием?
Д. Х.: Я надеюсь, что ответ на этот вопрос появится в процессе работы. Но с моей точки зрения, сознание и интеллект разобщены. Одно без другого вполне может существовать.
М. Ф.: Сильный ИИ может стать разумным зомби?
Д. Х.: Возникает философский вопрос, как об этом узнать, если машина ведет себя так же, как и мы? Если воспользоваться бритвой Оккама, получится, что если некто демонстрирует такое же поведение, как и я, и сделан из того же материала, то можно предположить, что он чувствует то же самое, что и я. Но машина сделана из другого материала. И в этом случае уже нельзя безоговорочно применить бритву Оккама. Может быть, в некотором смысле машины сознательны, но на уровне чувств мы этого не ощущаем, потому что они сильно отличаются от нас.
М. Ф.: То есть вы верите в возможность сознания у машин? Что это не биологический феномен.
Д. Х.: У меня нет подобных предубеждений. Пока мы не знаем ответа. Вполне может оказаться, что в биологических системах есть что-то особенное. Например, сторонник гипотезы квантового сознания сэр Роджер Пенроуз считает, что создание сильного ИИ невозможно. Но я надеюсь, что путь, по которому мы идем, даст понимание о том, что такое сознание и где оно находится.
М. Ф.: Какие риски, на ваш взгляд, связаны с сильным ИИ? Илон Маск говорил о «призывах демона» и экзистенциальной угрозе. Много об этом писал и Ник Бостром, который, насколько я знаю, входит в совет экспертов DeepMind. А что об этом думаете вы?
Д. Х.: Я много говорил с ними об этих вещах. И как это всегда бывает при личных беседах, проявились различные нюансы высказываний, которые изначально казались не тем, чем стали.
Лично я работаю над ИИ, потому что считаю, что это принесет пользу человечеству. Позволит раскрыть наш потенциал в науке. Любая технология сама по себе нейтральна. А будущее зависит от того, как мы, люди, решим ее использовать и распределить выгоды.
Сложностей много, но они больше напоминают геополитические проблемы, которые нужно решать обществу. Ник Бостром беспокоится о технических вопросах, таких как проблема контроля и проблема выравнивания. Мне кажется, что говорить об этом пока рано и нужны дополнительные исследования, ведь обсуждаемые системы появились недавно.
Пять лет назад все эти вопросы вообще были чисто философскими. Теперь у нас есть AlphaGo и зарождаются другие интересные технологии. На текущей стадии нужно делать обратное проектирование этих вещей и экспериментировать с ними, создавая инструменты визуализации и анализа. Это позволит лучше понять, как функционируют эти «черные ящики» и как мы интерпретируем их поведение.
М. Ф.: Уверены ли вы, что мы справимся с опасностями, которые несет сильный ИИ?
Д. Х.: Когда эти системы перестанут быть «черным ящиком», мы разберемся, как ими управлять. Я уверен, что через инженерные эксперименты можно решить многие проблемы, о которых беспокоится Ник Бостром. Теория и практика должны идти рука об руку. Это не значит, что я не вижу поводов для беспокойства. Но я предпочитаю заниматься актуальными проблемами. Такими, как тестирование систем, которые мы внедряем в продукты. Конечно, некоторые из долгосрочных проблем настолько сложны, что возникает желание думать о них уже сейчас, задолго до того, как появится реальная необходимость искать их решение.