Шрифт:
Интервал:
Закладка:
Основная идея похожа на ту, что была в описанном ранее примере с поощрением лояльности клиентов: провести один или серию экспериментов с изменением одного параметра и контролем максимального количества всех остальных. Например, можно провести эксперимент с электронной рассылкой клиентам, в которой вы протестируете тему сообщения. При прочих равных условиях (то же самое содержание, время отправки и так далее) с единственной разницей в теме, если вы отметите, что уровень просмотра сообщения с другой темой гораздо выше, у вас есть все основания сделать вывод, что именно тема сообщения — причина интереса к нему.
У этого эксперимента есть свои ограничения, так как, несмотря на то что он подтверждает влияние фактора темы сообщения, неясно, какое именно слово или фраза вызвали отклик пользователей. Чтобы это выяснить, требуется проведение дополнительных экспериментов. Рассмотрим более количественный пример: время отправки сообщения может оказать серьезное влияние на уровень просмотра. Чтобы это проверить, можно провести контролируемый эксперимент с вариантами (сделать отправку электронной рассылки по частям в 8, 9, 10 часов утра и так далее) и проанализировать, как время отправки сообщения повлияло на уровень просмотра. Так вы сможете прогнозировать (интерполировать) предполагаемый уровень просмотра сообщения, отправленного в 8:30 утра.
ЧТО ВЫ МОЖЕТЕ СДЕЛАТЬ?
Рекомендация аналитикам. Вам стоит стремиться действовать в двух направлениях — «точить топор» и расширять арсенал инструментов. Вы станете более эффективным и ценным специалистом, кроме того, это будет инвестицией в себя и в развитие вашей карьеры. Оцените статистические навыки и навыки визуализации данных, которыми вы сейчас пользуетесь. Как вы можете их улучшить? Например, если вы освоите среду R, поможет ли это вам быстрее и эффективнее проводить разведочный анализ? Окажет ли более глубокий аналитический подход более важное влияние на ваш проект? Что вам необходимо, чтобы овладеть новым навыком?
Рекомендация руководителям. Обращайте особое внимание на ситуации, в которых применение дополнительных видов аналитической работы способно обеспечить более глубокие выводы и повлиять на эффективность деятельности компании. Если отсутствие товара на складе становится проблемным местом цепочки поставок, можно ли исправить эту ситуацию с помощью прогнозных моделей? Можно ли проводить больше экспериментов, которые углубят институциональные знания причинных факторов? Стимулируйте специалистов по работе с данными, чтобы они повышали квалификацию, и всячески их в этом поддерживайте. Позвольте им опробовать новые программные средства, которые могут облегчить их работу и сделать ее более эффективной.
Подобные эксперименты обеспечивают более глубокое понимание системы и причинно-следственных взаимосвязей, что можно использовать при составлении прогнозов и планировании кампаний и других изменений, цель которых — улучшить и без того хорошие показатели, которых кто-то только стремится достичь. На их основе также можно строить имитационные модели, которые можно применять для оптимизации системы. Например, можно смоделировать цепочку поставок и изучить, как разные варианты схемы и условий пополнения склада влияют на дефицит товаров на складе или на совокупные расходы на транспортировку и хранение товаров. Этот вид деятельности отражен в правом верхнем углу матрицы Дэвенпорта в табл. 1.2. Это наивысший уровень аналитики. Принимая во внимание контролируемый, научный характер сбора данных на протяжении определенного периода, а также высокую эффективность подобных каузальных моделей, они становятся, по словам Джеффри Лика, «золотым стандартом» анализа данных.
С точки зрения ведения бизнеса вся эта бурная деятельность по анализу данных и разработке моделей проводится не ради самой деятельности и не по прихоти высшего руководства. Ее цель — поддержка основных показателей, таких как уровни просмотров, конверсии, наконец, показатель выручки. Поэтому критически важно, чтобы эти основные показатели были правильными и были качественно разработаны. В противном случае вы будете оптимизировать не то, что надо. Учитывая важность качественной разработки показателей, подробнее остановимся на этом вопросе в следующей главе.
Когда не знаешь, куда идешь, то, скорее всего, окажешься где-нибудь еще.
Считайте, что поддается подсчету, измеряйте, что поддается измерениям, а неизмеряемое делайте измеряемым.
В компании с управлением на основе данных должна быть четкая стратегия, то есть направление развития бизнеса, а также конкретный набор основных показателей — ключевых показателей эффективности деятельности (KPI) — для отслеживания, в верном ли направлении и насколько успешно идет развитие бизнеса. Ответственность за достижение этих KPI ложится на бизнес-единицы или подразделения, где могут быть определены дополнительные KPI специально для этого подразделения. Это завершает набор операционных и диагностических показателей, на основе которых контролируется выполнение задач, программ, тестов и проектов, ведущих к выполнению KPI.
Учитывая сказанное, чрезвычайно важна качественная разработка показателей. Они выполняют такую же роль, как точный компас. Вряд ли вы захотите следовать стратегическому показателю, указывающему, что вы продвигаетесь в желаемом юго-восточном направлении, когда на самом деле вы идете на северо-восток, или операционному показателю, отражающему ежегодный рост конверсии на 5 %, когда на самом деле никакого роста нет. Точно так же вы не захотите руководствоваться неверным диагностическим показателем, который не в состоянии как можно раньше проинформировать вас о том, что ваш сайт на грани краха. Показатели, кроме того, представляют собой результаты экспериментов и A/B тестов, которые при правильном подходе вносят весомый вклад в каузальный анализ, что, как мы обсуждали в предыдущей главе, может стать отличной основой для формулирования выводов и стратегий на основе данных. Эту идею удачно сформулировал Дэвид Скок:
Один из способов оценить работу компании — представить ее в виде автомата, выдающего определенный объем продукции, с рычагами, с помощью которых управленческая команда способна контролировать его работу. У слабой команды ограниченное понимание, как работает ее автомат и какие у нее есть рычаги влияния. Чем лучше управленческая команда, тем лучше она понимает схему работы автомата и то, как можно оптимизировать его работу (на какие рычаги нажать). При разработке показателей мы стремимся улучшить свое понимание автомата и схемы его работы. Качественно разработанные показатели будут способствовать повышению результативности работы на выходе[92].