Шрифт:
Интервал:
Закладка:
Никто не ожидал таких результатов. Когда ученые только приближались к геному как к святыне, никто не мог себе представить, что основными его жильцами будут неконтролируемые и эгоистичные псевдогены. Хотя нам следовало это предвидеть, поскольку все предшествующие уровни жизни также кишели паразитами: черви в кишечнике, бактерии в крови и вирусы в клетках. Почему бы в геноме не развестись ретротранспозонам? Кроме того, с середины 70-х годов прошлого столетия среди биологов-эволюционистов появилось и крепнет представление о том, что в основе естественного отбора лежит не столько состязание между видами, или подвидами, или отдельными особями, сколько состязание между генами, использующими организмы или их сообщества в качестве временных «боевых слонов» для борьбы с другими генами. Именно поэтому, вместо того чтобы с наслаждением и комфортом провести собственную жизнь, все живые организмы расходуют всю свою энергию и рискуют жизнью ради того, чтобы родить и вырастить свое потомство. И все живые организмы устроены так, что очень быстро стареют и умирают после прохождения репродуктивного периода жизни, а в случае с тихоокеанским лососем — умирают одновременно с появлением своего потомства. В этом нет никакого здравого смысла, если посмотреть на жизнь глазами эгоиста, но в этом есть огромный смысл для эгоистичных генов, управляющих нами изнутри как своими гоночными машинами, чтобы победить в соревновании и оставить как можно больше копий самих себя. Генам не важна продолжительность жизни отдельной особи. Им важно, чтобы эта особь оставила после себя как можно больше потомков в следующем поколении. Если гены «эгоистичны», а наши тела — это лишь их «машины» (спорная терминология, позаимствованная у Ричарда Докинза), то стоит ли удивляться, что некоторые гены нашли способ размножаться, даже не связывая себя никакими обязательствами перед организмом. Нет также ничего удивительного в том, что геном, как и организмы, оказался сам полем боя и эволюционного соревнования между генами. С 70-х годов прошлого столетия эволюционная биология стала наукой не о животных, а о генах.
В 1980 году двое ученых впервые попытались объяснить наличие в геноме огромных локусов ДНК, не кодирующих белки, тем, что эти локусы заполнены эгоистичными генетическими элементами, занятыми лишь копированием самих себя. «Поиск других объяснений, — пишут они, — может быть полезной тренировкой ума, но бесполезен в плане результатов». За такое дерзкое предсказание они были высмеяны научным миром. В среде генетиков того времени все еще царило убеждение, что если в геноме человека что-то есть, то это должно быть наполнено определенным значением для человека, а не для самого себя. Гены представлялись всего лишь прописями белков. Смешно было думать, что они преследуют какие-то собственные далеко идущие планы. Но предположение об эгоистичной природе генов вскоре было блестяще доказано. Хотя гены не могут мыслить и строить планы, те из них, которые отличаются эгоистичным нравом, просто копируют и продлевают себя, в то время как все остальные быстро сходят со сцены[91].
Сегменты эгоистичной ДНК— это не просто бесплатные пассажиры, чье присутствие просто увеличивает длину хромосом и приводит к большим затратам энергии во время их копирования. Эти сегменты еще нарушают целостность генов. Поскольку эгоистичные сегменты имеют обыкновение перепрыгивать с места на место или встраивать свои копии в любом месте на хромосомах, иногда случается, что они появляются внутри действующего гена, разрывая его на части, а потом перескакивают в новое место, вновь сшивая ген в прежнем месте. Именно такое поведение транспозонов впервые описала в 1940 году блестящий ученый-генетик Барбара Мак-Клинток (Barbara McClintock), которую ученый мир долго игнорировал и не замечал. (В конце концов за свои открытия она была удостоена в 1983 году Нобелевской премии.) Свое открытие она сделала, наблюдая за изменениями цвета зерен кукурузы в початках — признак, безусловно, наследуемый, но передающийся с нарушениями закона Менделя, что можно было объяснить только обратимой мутацией в гене, определяющем цвет зерен[92].
В геноме человека ретротранспозоны LINE-1 и Alu также вызывают мутации, «приземляясь» в середине генов. Например, разрывая на части ген фактора сворачиваемости крови, они вызывают гемофилию. Но по пока непонятным причинам наш геном в меньшей степени страдает от транспозонов, чем геномы других организмов. В среднем только 1 из 700 мутаций у человека вызывается «прыгающими генами», тогда как у мышей примерно 10% мутаций связано с активностью транспозонов. Потенциальная опасность транспозонов была продемонстрирована в 1950-х годах в экспериментах на плодовых мушках дрозофилах. Дрозофилы — излюбленный объект для генетических исследований. Для чистоты экспериментов обычно используют мушек одного вида, Drosophila melanogaster, которых развели в лабораториях всего мира. Естественно, мелкие, едва заметные мушки часто сбегают из лабораторий и скрещиваются с аборигенными видами. Один из родственных видов мушек, Drosophila willistoni, несет в своем геноме активный транспозон, названный P-элементом. Однажды в 50-х годах прошлого столетия где-то в Южной Америке вероятно в результате кровосмешения P-элемент из Drosophila willistoni перепрыгнул в Drosophila melanogaster. (Одна из угроз, которую несут в себе так называемые ксенотрансплантанты — органы свиньи или бабуинов, используемые для лечения людей, — состоит в том, что с этими органами в геном человека могут попасть чужеродные транспозоны, так, как это произошло с P-элементом у плодовых мушек.) С тех пор P-элемент распространился среди плодовых мушек как степной пожар. Сейчас этот транспозон может быть обнаружен практически в любой дикой плодовой мушке, хотя это уже не та форма, которая впервые была зарегистрирована в 1950-х годах. P-элемент отличался способностью встраиваться в гены и инактивировать их. Со временем у мушек сработали какие-то механизмы подавления транспозона и его копии застыли в геноме вечными бесплатными пассажирами.
В геноме человека такие активные разрушители генов, как P-элемент, пока не зарегистрированы. Похожий транспозон с именем «спящая красавица» был обнаружен в лососе. Когда в лабораторных условиях его внедрили в культуру клеток человека, он проявил незаурядную способность «скакать» по хромосомам, разрушая встречающиеся гены. Видимо, что-то подобное когда-то произошло и с транспозоном Alu, который был занесен в геном предков человека. Перенос скачущих генов от вида к виду сначала вызывает их бурную экспансию, пока геном не выработает механизмы подавления транспозона, после чего его малоактивные или инактивированные копии навсегда остаются «вшитыми» в геном. Тот факт, что гены человека сейчас не сильно страдают от активности транспозонов, говорит о том, что последняя инвазия случилась довольно давно, и геном уже успел справиться с ней.
В этом плане, как и во многих других, нам очень повезло в отличие от мушек дрозофил. Механизм подавления транспозонов у нас один и тот же. Согласно последней теории этот механизм состоит в метилировании цитозина. Цитозин, как вы помните, это «буква» С в генетическом алфавите. Метилирование, или, другими словами, добавление к цитозину метильной группы из атома углерода и трех атомов водорода, препятствует считыванию информации с генов. Большинство генов в геноме, а также их промоторы (структуры в начале генов, запускающих их считывание) находятся в заблокированном состоянии. Общепризнано, что метилирование в клетках используется для отключения генов, которые не нужны в данной ткани. Вот почему мозг отличается от печени, а печень от кожи и т. д. Но недавно получила подтверждение альтернативная теория назначения метилирования ДНК, согласно которой этот процесс не столь важен для дифференциации тканей, как для подавления транспозонов и других внутригеномных паразитов. Действительно, ДНК ретротранспозонов Alu и LINE-1 наиболее метилирована в геноме. На ранних стадиях развития эмбриона в клетках почти нет метилированной ДНК и все гены находятся в рабочем состоянии. В это время особые белки проходят с инспекцией вдоль всех хромосом, распознают и метилируют гены вирусов и транспозонов. Первое, что происходит в раковых клетках, — это демитилирование ДНК. В результате все генетические паразиты оказываются на свободе и быстро увеличиваются в числе. Именно в результате их активности в раковых клетках стремительно накапливаются мутации, до неузнаваемости изменяя клетки. Метилирование — это первый рубеж, который выстраивает клетка против проникших в нее генетических паразитов[93].