litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 421 422 423 424 425 426 427 428 429 ... 482
Перейти на страницу:
737—739 // https://doi.org/10.1038/266737a0

1626

Dunwiddie T., Lynch G. (1978). Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency / The Journal of Physiology, Vol. 276, pp. 353—367 // https://doi.org/10.1113/jphysiol.1978.sp012239

1627

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1628

Ito M., Sakurai M., Tongroach P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells / The Journal of Physiology, Vol. 324, pp. 113—134 // https://doi.org/10.1113/jphysiol.1982.sp014103

1629

Herculano-Houzel S. (2009). The Human Brain in Numbers: A Linearly Scaled-up Primate Brain / Frontiers in Human Neuroscience, Vol. 3, Iss. 21, 2009 // https://doi.org/10.3389/neuro.09.031.2009

1630

Марков Д. (2021). Удалось увидеть, как в мозжечке личинок данио-рерио строятся модели взаимодействия тела с внешним миром / Элементы, 17.12.2021 // https://elementy.ru/novosti_nauki/433910/Udalos_uvidet_kak_v_mozzhechke_lichinok_danio_rerio_stroyatsya_modeli_vzaimodeystviya_tela_s_vneshnim_mirom

1631

Markov D. A., Petrucco L., Kist A. M., Portugues R. (2021). A cerebellar internal model calibrates a feedback controller involved in sensorimotor control / Nature Communications, Vol. 12, 2021 // https://doi.org/10.1038/s41467-021-26988-0

1632

Levy W. B., Steward O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus / Neuroscience, Vol. 8, Iss. 4, April 1983, pp. 799—808 // https://doi.org/10.1016/0306-4522(83)90011-8

1633

Artola A., Brocher S., Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex / Nature, Vol. 347, pp. 69—72 // https://doi.org/10.1038/347069a0

1634

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1635

Debanne D., Gahwiler B. H., Thompson S. M. (1994). Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro / Proceedings of the National Academy of Sciences of the United States of America, Vol. 91 (3), pp. 1148—1152 // https://doi.org/10.1073/pnas.91.3.1148

1636

Malinow R. (1991). Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP / Science, Vol. 252, Iss. 5006, pp. 722—724 // https://doi.org/10.1126/science.1850871

1637

Verstraelen P., Van Dyck M., Verschuuren M., Kashikar N. D., Nuydens R., Timmermans J.-P., De Vos W. H. (2018). Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture / Frontiers in Neuroscience, 26 June 2018 // https://doi.org/10.3389/fnins.2018.00389

1638

Danielson E., Lee S. H. (2014). SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons / PLoS One, Vol. 9 (12), e115298 // https://doi.org/10.1371/journal.pone.0115298

1639

Kashiwagi Y., Higashi T., Obashi K., Sato Y., Komiyama N. H., Grant S. G. N., Okabe S. (2019). Computational geometry analysis of dendritic spines by structured illumination microscopy / Nature Communications, Vol. 10, Article number: 1285 // https://doi.org/10.1038/s41467-019-09337-0

1640

Markram H., Sakmann B. (1995). Action potentials propogating back into dendrites triggers changes in efficacy of single-axon synapses between layer V pyramidal cells / Society for Neuroscience abstracts, Vol. 21.

1641

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1642

Song S., Miller K. D., Abbott L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity / Nature Neuroscience. Vol. 3, pp. 919—926 // https://doi.org/10.1038/78829

1643

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1644

Izhikevich E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling / Cerebral Cortex, Vol. 17, pp. 2443—2452 // https://doi.org/10.1093/cercor/bhl152

1645

Frémaux N., Gerstner W. (2016). Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules / Frontiers in Neural Circuits, Vol. 9 // https://doi.org/10.3389/fncir.2015.00085

1646

Tavanaei A., Maida A. (2019). BP-STDP: Approximating backpropagation using spike timing dependent plasticity / Neurocomputing, Vol. 330, pp. 39—47 // https://doi.org/10.1016/j.neucom.2018.11.014

1647

Bengio Y., Mesnard T., Fischer A., Zhang S., Wu Y. (2017). STDP-compatible approximation of backpropagation in an energy-based model / Neural computation, Vol. 29, Iss. 3, pp. 555—577 // https://doi.org/10.1162/NECO_a_00934

1648

Millidge B., Tschantz A., Buckley C. L. (2020). Predictive coding approximates backprop along arbitrary computation graphs // https://arxiv.org/abs/2006.04182

1649

Mozafari M., Ganjtabesh M., Nowzari-Dalini A., Thorpe S. J., Masquelier T. (2019). Bio-Inspired Digit Recognition UsingSpike-Timing-Dependent Plasticity (STDP) and Reward-Modulated STDP in Deep Convolutional Networks / Pattern Recognition, Vol. 94, pp. 87—95 // https://doi.org/10.1016/j.patcog.2019.05.015

1650

Lee C., Panda P., Srinivasan G., Roy K. (2018). Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning / Frontiers in Neuroscience, Vol. 12, 2018 // https://doi.org/10.3389/fnins.2018.00435

1651

Mozafari M., Kheradpisheh S. R., Masquelier T., Nowzari-Dalini A., Ganjtabesh M. (2018). First-Spike-Based Visual Categorization Using Reward-Modulated STDP / IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 12, pp. 6178—6190 // https://doi.org/10.1109/TNNLS.2018.2826721

1652

Vaila R., Chiasson J., Saxena V. (2019). Deep Convolutional Spiking Neural Networks for Image Classification // https://arxiv.org/abs/1903.12272

1653

Wunderlich T., Kungl A. F., Müller E., Hartel A., Stradmann Y., Aamir S. A., Grübl A., Heimbrecht A., Schreiber K., Stöckel D., Pehle C., Billaudelle S., Kiene G., Mauch C., Schemmel J., Meier K., Petrovici M. A. (2019).

1 ... 421 422 423 424 425 426 427 428 429 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?