Шрифт:
Интервал:
Закладка:
1626
Dunwiddie T., Lynch G. (1978). Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency / The Journal of Physiology, Vol. 276, pp. 353—367 // https://doi.org/10.1113/jphysiol.1978.sp012239
1627
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
1628
Ito M., Sakurai M., Tongroach P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells / The Journal of Physiology, Vol. 324, pp. 113—134 // https://doi.org/10.1113/jphysiol.1982.sp014103
1629
Herculano-Houzel S. (2009). The Human Brain in Numbers: A Linearly Scaled-up Primate Brain / Frontiers in Human Neuroscience, Vol. 3, Iss. 21, 2009 // https://doi.org/10.3389/neuro.09.031.2009
1630
Марков Д. (2021). Удалось увидеть, как в мозжечке личинок данио-рерио строятся модели взаимодействия тела с внешним миром / Элементы, 17.12.2021 // https://elementy.ru/novosti_nauki/433910/Udalos_uvidet_kak_v_mozzhechke_lichinok_danio_rerio_stroyatsya_modeli_vzaimodeystviya_tela_s_vneshnim_mirom
1631
Markov D. A., Petrucco L., Kist A. M., Portugues R. (2021). A cerebellar internal model calibrates a feedback controller involved in sensorimotor control / Nature Communications, Vol. 12, 2021 // https://doi.org/10.1038/s41467-021-26988-0
1632
Levy W. B., Steward O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus / Neuroscience, Vol. 8, Iss. 4, April 1983, pp. 799—808 // https://doi.org/10.1016/0306-4522(83)90011-8
1633
Artola A., Brocher S., Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex / Nature, Vol. 347, pp. 69—72 // https://doi.org/10.1038/347069a0
1634
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
1635
Debanne D., Gahwiler B. H., Thompson S. M. (1994). Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro / Proceedings of the National Academy of Sciences of the United States of America, Vol. 91 (3), pp. 1148—1152 // https://doi.org/10.1073/pnas.91.3.1148
1636
Malinow R. (1991). Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP / Science, Vol. 252, Iss. 5006, pp. 722—724 // https://doi.org/10.1126/science.1850871
1637
Verstraelen P., Van Dyck M., Verschuuren M., Kashikar N. D., Nuydens R., Timmermans J.-P., De Vos W. H. (2018). Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture / Frontiers in Neuroscience, 26 June 2018 // https://doi.org/10.3389/fnins.2018.00389
1638
Danielson E., Lee S. H. (2014). SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons / PLoS One, Vol. 9 (12), e115298 // https://doi.org/10.1371/journal.pone.0115298
1639
Kashiwagi Y., Higashi T., Obashi K., Sato Y., Komiyama N. H., Grant S. G. N., Okabe S. (2019). Computational geometry analysis of dendritic spines by structured illumination microscopy / Nature Communications, Vol. 10, Article number: 1285 // https://doi.org/10.1038/s41467-019-09337-0
1640
Markram H., Sakmann B. (1995). Action potentials propogating back into dendrites triggers changes in efficacy of single-axon synapses between layer V pyramidal cells / Society for Neuroscience abstracts, Vol. 21.
1641
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
1642
Song S., Miller K. D., Abbott L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity / Nature Neuroscience. Vol. 3, pp. 919—926 // https://doi.org/10.1038/78829
1643
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
1644
Izhikevich E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling / Cerebral Cortex, Vol. 17, pp. 2443—2452 // https://doi.org/10.1093/cercor/bhl152
1645
Frémaux N., Gerstner W. (2016). Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules / Frontiers in Neural Circuits, Vol. 9 // https://doi.org/10.3389/fncir.2015.00085
1646
Tavanaei A., Maida A. (2019). BP-STDP: Approximating backpropagation using spike timing dependent plasticity / Neurocomputing, Vol. 330, pp. 39—47 // https://doi.org/10.1016/j.neucom.2018.11.014
1647
Bengio Y., Mesnard T., Fischer A., Zhang S., Wu Y. (2017). STDP-compatible approximation of backpropagation in an energy-based model / Neural computation, Vol. 29, Iss. 3, pp. 555—577 // https://doi.org/10.1162/NECO_a_00934
1648
Millidge B., Tschantz A., Buckley C. L. (2020). Predictive coding approximates backprop along arbitrary computation graphs // https://arxiv.org/abs/2006.04182
1649
Mozafari M., Ganjtabesh M., Nowzari-Dalini A., Thorpe S. J., Masquelier T. (2019). Bio-Inspired Digit Recognition UsingSpike-Timing-Dependent Plasticity (STDP) and Reward-Modulated STDP in Deep Convolutional Networks / Pattern Recognition, Vol. 94, pp. 87—95 // https://doi.org/10.1016/j.patcog.2019.05.015
1650
Lee C., Panda P., Srinivasan G., Roy K. (2018). Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning / Frontiers in Neuroscience, Vol. 12, 2018 // https://doi.org/10.3389/fnins.2018.00435
1651
Mozafari M., Kheradpisheh S. R., Masquelier T., Nowzari-Dalini A., Ganjtabesh M. (2018). First-Spike-Based Visual Categorization Using Reward-Modulated STDP / IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 12, pp. 6178—6190 // https://doi.org/10.1109/TNNLS.2018.2826721
1652
Vaila R., Chiasson J., Saxena V. (2019). Deep Convolutional Spiking Neural Networks for Image Classification // https://arxiv.org/abs/1903.12272
1653
Wunderlich T., Kungl A. F., Müller E., Hartel A., Stradmann Y., Aamir S. A., Grübl A., Heimbrecht A., Schreiber K., Stöckel D., Pehle C., Billaudelle S., Kiene G., Mauch C., Schemmel J., Meier K., Petrovici M. A. (2019).