Шрифт:
Интервал:
Закладка:
Белки, которые жизнь создает из аминокислот, – рабочие лошадки биохимии. Они могут служить катализаторами и возбуждать химические реакции, а могут составляться в более крупные структуры. Если они складываются в так называемые многобелковые комплексы[140], то превращаются в полномасштабные молекулярные машины, хитроумные инженерные творения самой природы, выработанные в результате неустанной селекции и эволюции. Это и в самом деле механизмы, на которых основана любая жизнь. У одноклеточных организмов белки составляют до 50 % сухой массы.
Некоторые подобные белковые структуры стяжали себе звание двигателей, поскольку вовлечены в основные функции обмена веществ, производства полезной химической энергии и синтез новых соединений – то есть в те самые процессы, которые поддерживают жизнь во всех организмах.
Это снова возвращает нас к школьному курсу химии: а на каком топливе работают эти двигатели? В конечном итоге все сводится к движению и передаче двух фундаментальных физических частиц – электронов и протонов. Химия жизни поддерживается обменом и перетеканием заряженных частиц в ходе реакций окисления и восстановления.
Иногда эти реакции происходят сами по себе, если нужные молекулы сближаются на достаточное расстояние при достаточной энергии. Например, при нагреве метан способен перегореть в кислород. Все мы наблюдали эту реакцию в кухне, когда готовили на газу, и в школе на лабораторных работах, когда зажигали бунзеновские горелки. В результате атомы углерода и водорода связываются с кислородом и в процессе теряют электроны. В сущности, само слово «окисление» несколько устарело: в ходе таких реакций атомы на самом деле теряют или передают электроны. А передача заряженных частиц означает, что создается поток энергии, к которому можно подключиться, чтобы подпитывать другие процессы.
Однако не все реакции идут настолько спонтанно, зачастую им требуется дополнительный толчок. Такова жизнь: ее молекулярные двигатели пристраиваются к реакциям, катализируют их, часть энергии забирают на свои цели поддержания жизни, причем зачастую запасают эту энергию в других молекулах, которые переправляют ее в другие участки клетки или клеток организма. Именно так поддерживается жизнь на Земле. И молекулярные двигатели на самом деле не просто пристраиваются к химическим реакциям, они физически собирают химическое топливо и создают условия для того, чтобы эти реакции шли: они обеспечивают обмен веществ.
Однако здесь таится колоссальный подвох. Все подобные химические реакции, подобные передачи электронов или протонов, превращают набор ингредиентов в набор продуктов. Так что если бы у Земли был ограниченный запас сырья и реактивов и она предоставляла его в распоряжение живых организмов, со временем запас истощился бы. Но ведь планета не статична. Бурная геофизическая активность – от вулканов до тектонических сдвигов – перерабатывает органические осадки и их химические составляющие и возвращает их на поверхность, а реакции в атмосфере с участием солнечного света постоянно производят свежее сырье.
Сложность в том, что эти процессы относительно медленные: на то, чтобы заново заполнить химическую кладовую, уходят миллионы лет. Жизнь зародилась по крайней мере 3,5 миллиарда лет назад и сохранилась с тех пор, значит, у нее был еще какой-то источник средств к существованию, пока Земля тащилась себе вперед. И верно. Именно в этом и состояло озарение, которое постигло меня, когда я читал работу Фалковски, Фенчела и Делонга. В их статье объясняется, как молекулярные двигатели жизни в результате эволюции объединились в поразительную взаимосвязанную систему – систему, при помощи которой микроскопические организмы катализируют множество реакций окисления и восстановления во множестве самодостаточных циклов. Иными словами, молекулярные двигатели перезапускают последовательности повторяющихся химических реакций, которые без них шли бы очень медленно или вообще не состоялись бы.
В результате обмена веществ атомы элементов вроде водорода, углерода, азота, кислорода и серы постоянно переходят из одного места в другое, из молекулы в молекулу. Со временем химическая структура земной коры и океанов оказывается глубочайшим образом переработана – и это превращение не было бы возможно в отсутствие жизни. Это и есть биогеохимия. Практически вся среда нашего обитания на Земле – от кислорода, которым мы дышим, до состава почвы у нас под ногами – всего лишь результат уравновешивания всех этих взаимосвязанных, взаимозависимых циклов. Разумеется, мы не отделены от этой системы. Жизнь, подобная нашей, принадлежит к домену эукариотов с большими сложными клетками, которые, очевидно, представляют собой результат различных случаев эндосимбиоза – ассимиляции всевозможной машинерии из более ранних, чисто симбиотических отношений между одноклеточными организмами. Сложноклеточная жизнь практически исключительно полагается на дыхание, для которого ей нужен кислород, и на всевозможные источники энергии, получаемой из углеродосодержащих молекул. А это значит, наши жадные до кислорода организмы играют важную роль в системе обмена веществ в масштабах планеты.
* * *
Эти еще не до конца выявленные самоподдерживающиеся циклы – важнейшая веха на нашем пути не только к пониманию того, как связана любая жизнь с химической и физической тканью Вселенной, но и к попытке найти свое место в более широком контексте. Число обменных процессов, по крайней мере сегодня на Земле, конечно. В принципе, это могли бы быть и другие разновидности химических реакций, однако миллиарды лет эволюции на Земле пришли в конце концов именно к конкретному, нашему набору реакций.
Эти метаболические рецепты можно уподобить различным комбинациям молекулярного «топлива»[141] с молекулярными окислителями, которые «сжигают» это топливо. Лучше всего мы знакомы с метаболическими последовательностями, в которых происходят процессы вроде кислородного дыхания, ферментации, усвоения азота, фотосинтеза с выработкой кислорода и без. Есть и более экзотические – сульфатное, нитратное, нитритное и даже железистое и марганцевое дыхание. На каждом из возможных метаболических вариантов, а иногда на нескольких сразу специализируются свои бактерии и археи. Например, молекулярные двигатели в определенных типах архей могут сочетать углекислый газ (окислитель) с молекулярным водородом (топливо) и вырабатывать метан и воду. Еще они могут разделять молекулы уксусной кислоты и делать из них метан и углекислый газ. Львиная доля метана, доступная нам, людям, и, скажем откровенно, вырабатываемая нами, людьми, и многими другими животными, производится трудолюбивыми крошками-археями. Эта разновидность обменных процессов называется метаногенез[142].