litbaza книги онлайнРазная литератураЯзыковая структура - Алексей Федорович Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 128
Перейти на страницу:
другие построения в конечном счете тоже оказываются количественными. Тот геометрический круг, который мы получили на основании не геометрического, но алгебраического уравнения круга, возник у нас только в результате известного рода количественных операций. Поэтому количество, взятое как таковое, всегда однопланово, и математическое обозначение этого количества всегда однозначно, как бы различно мы ни понимали те области, которые исчисляются или строятся при помощи количественного принципа.

2. Языковое обозначение всегда имеет своим предметом ту или иную многоплановую структуру, в которой один план не сводим к другому плану. Язык состоит из звуков, указывающих на разные предметы, которые он обозначает. Что общего между звуками, обозначающими данную вещь или событие, и самими этими вещами и событиями? Звук речи есть акустически-артикуляционное явление. Но что акустического содержится в том предмете, который мы обозначили звуками речи? Что акустического и что артикуляционного в таких вещах, как стол, стул, дом, дерево, забор, ворота, двор, дорожки или аллеи во дворе и т.д.? В каждой морфеме, как минимально значащей звуковой единице, не говоря уже о слове как известной совокупности таких морфем и о других более сложных языковых структурах, обязательно содержатся эти два, не сводимых один к другому смысловых плана. Без этой двухплановости не существует языка.

Однако в таком случае позволительно спросить: если такую двухплановую языковую структуру обозначить одноплановой математической формулой, не значит ли это свести языковую двухплановость на смысловую одноплановость и не значит ли это обозначать уже не язык, а что-то совсем другое? Эту невозможность выражения двухплановой структуры при помощи одноплановой не нужно доводить до абсурда, утверждая, что одноплановая структура обозначения вовсе ничего не обозначает. Как мы уже говорили выше, количественное обозначение неколичественного предмета дает очень много, поскольку все неколичественные предметы, т.е. все качества, уж для одного того, чтобы отличаться друг от друга, должны быть прежде всего чем-то одним, чем-то другим, чем-то третьим и т.д. Не считая стол за некую единицу и также не считая стул за некую единицу, мы вообще не можем эти две вещи понять, как именно две, т.е. не можем сравнивать между собой, не можем отличать одну от другой, не можем приписывать им разные свойства, т.е. вообще не можем их воспринимать и мыслить. Что число есть орган познания, это хорошо понимали уже древние пифагорейцы. Но весь вопрос в том, является ли количественное различение предметов в то же время и определением их качества, и можно ли, обозначая предметы, ограничиться только их математическим обозначением? На подобного рода вопросы здравый смысл может ответить только отрицательно.

Итак, математическое обозначение языкового факта не то чтобы решительно ничего в нем не обозначало, но обозначает в нем такую степень его общности, в которой уже теряется конкретность и специфика обозначаемого факта; а это значит, что математическое обозначение в данном случае ничего существенного не обозначает.

Раздел II.

О МЕТОДАХ ИЗЛОЖЕНИЯ МАТЕМАТИЧЕСКОЙ ЛИНГВИСТИКИ ДЛЯ ЛИНГВИСТОВ

Предлагаемый раздел не имеет в виду делать какие-нибудь положительные предложения по вопросам математической лингвистики, а ставит своей целью сформулировать некоторые критические замечания относительно вошедших в практику и, с точки зрения автора, нецелесообразных методов изложения этой науки. Нельзя считать удовлетворительным то положение дела, что многотысячная масса лингвистов, работающих в научных институтах, вузах и средних школах, относится к этой науке либо равнодушно, либо даже враждебно, а ее представители излагают ее в форме, малодоступной даже для самых передовых лингвистов. Внимательное изучение всей математически-лингвистической литературы, весьма обширной, убеждает нас в том, что этот разрыв отнюдь не случаен и связан с глубокими особенностями математической лингвистики. Он не только вреден для развития лингвистики, но еще и вызван искусственными причинами, которых не так трудно избежать. Основная причина этого разрыва заключается в том, что язык, будучи явлением социальным и прежде всего орудием разумного человеческого общения, ни в какой мере не охватывается только одними количественными операциями и что эти количественные операции имеют смысл только при условии существенной связи с языковой спецификой. Такие категории, как структура или модель, уже давно нашли почетное место в науке и технике, и их использование в лингвистике не только дело естественное, но и вполне современное. Но можно ли свести язык на математические формулы? То, что мы называем словом, если иметь в виду контекст человеческой речи, обладает бесконечными семантическими оттенками и бесконечными грамматическими возможностями. Даже простой звук человеческой речи настолько бесконечен по своим артикуляционным и акустическим свойствам, что для него возможны только самые общие математические обозначения, и их невозможно выразить во всех их оттенках методами математики. Насильственное применение математических формул в области языка, особенно без использования данных так называемой традиционной лингвистики, неизбежно приводит к невероятной путанице и в теории языка, и в области изложения лингвистической науки. Чтобы показать это на деле и чтобы критика была вполне ясной, мы возьмем отнюдь не всю математическую лингвистику, а только проблему языковой модели, и по преимуществу проблему только фонологической модели. Кроме того, возьмем для критики не множество авторов, писавших на эту тему, а только одного автора и ограничимся только одной его работой. Иначе критика будет слишком общей и не сумеет показать традиционного метода изложения математической лингвистики во всей его конкретности. Мы остановимся на книге И.И. Ревзина «Модели языка» (М., 1962).

В предисловии к своей книге И.И. Ревзин пишет, что он постепенно преодолел «первоначальное увлечение чисто внешней стороной математической символики» и понял, что «математические идеи в лингвистике плодотворны лишь там, где они связаны с ясным представлением о чисто лингвистической стороне тех или иных явлений» (с. 3). Автор подчеркивает, что он хочет построить «именно лингвистическую, а не математическую теорию моделей» (с. 5). Он настолько отделяет лингвистическую сторону от математической символики, что пользуется этой последней только в конце книги, в особом приложении. Таким образом, читатель-лингвист, по мысли автора, имеет право ожидать от него именно лингвистического понимания модели и притом такого понимания, которое возникало бы не путем случайных догадок или домыслов, но в результате систематического изложения этого предмета у автора, поскольку самый термин «модель» в традиционной лингвистике не употребляется.

Что же мы находим у автора?

Автор нигде не дает точного определения термина «модель». Это видно уже из названия первой главы – «Типы моделей языка» и первого параграфа первой главы – «Дедуктивные методы в лингвистике». Казалось бы, сначала нужно было бы дать точное определение языковой модели, а уже потом говорить о типах языковых моделей. Изложение же вопроса о дедуктивных методах в лингвистике сразу погружает

1 2 3 4 5 6 7 8 9 10 ... 128
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?