litbaza книги онлайнДомашняяПутеводитель для влюблённых в математику - Эдвард Шейнерман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 67
Перейти на страницу:

Ключевая идея – задаться вопросом: а что, если?..

А что, если количество простых чисел конечно? Если мы продемонстрируем, что предположение: «Количество простых чисел конечно» – приводит к абсурдному выводу, то будем считать его ложным[21]. Вслед за Шерлоком Холмсом мы найдем истину, отбросив невозможные варианты, и у нас получится, что простых чисел бесконечно много.

Вот что нам надо будет сделать:

1. Предположить, что количество простых чисел конечно;

2. Показать, что это предположение ведет к невозможному выводу;

3. Сделать умозаключение, что, раз предположение ведет к логическому противоречию, оно ложно;

4. Вывести из этого, что простых чисел бесконечно много.

А теперь перейдем к делу. Предположим, что простые числа можно пересчитать, и посмотрим, к чему это приведет.

Если количество простых чисел конечно, должно существовать наибольшее простое число P – крайнее в ряду простых чисел. В таком случае полный перечень простых чисел будет выглядеть так:

2, 3, 5, 7, 11, 13, …, P.

Перемножим все эти числа и приплюсуем единицу. Назовем получившееся гигантское число N:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Число N – простое[22]? Наше предположение заставляет нас ответить: нет, потому что N больше P, последнего простого числа. Значит, N – составное число, и его можно разложить на множители. Здесь мы попадаем в западню.

Мы знаем, что у N есть простые делители. Может ли таким делителем быть 2? Мы утверждаем: нет. Посмотрите на формулу для вычисления N и обратите внимание, что число в скобках четное, потому что среди множителей присутствует 2:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Таким образом, N на единицу больше некоторого гигантского четного числа. Другими словами, N – нечетное, следовательно, оно не делится на 2.

Ну и ладно. Мы же знаем, что у N есть простой делитель, так что нет ничего страшного в том, что 2 не подходит. Как насчет 3? Посмотрим снова на число в скобках и обнаружим, что среди множителей есть 3:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Таким образом, N на единицу больше некоторого гигантского числа, делящегося на 3. Это означает, что при вычислении частного N / 3 мы получим остаток 1. Следовательно, N не делится на 3.

Видите, куда мы движемся? Возьмем очередное простое число, 5. Мы утверждаем, что N не делится на 5, потому что оно на единицу больше числа, без остатка делящегося на 5:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Точно так же мы доказываем, что N не делится ни на 7, ни на 11, ни на 13 и ни на какое угодно другое простое число!

К чему мы пришли? Наше предположение о том, что количество простых чисел конечно, привело нас к двум выводам:

N делится на некое простое число;

N не делится ни на какое простое число.

Но это же абсурдно! Из ловушки можно выбраться, только если признать, что предположение о конечном количестве простых чисел было ложным. Таким образом, получается, что простых чисел бесконечно много.

Конструктивный подход

Представленное нами доказательство относится к разряду доказательств от противного. Мы предположили, что утверждение, обратное тому, которое мы хотим доказать, верно, затем продемонстрировали, что это приводит к безвыходной ситуации, после чего сделали умозаключение, что наше предположение ложно, а утверждение, требующее доказательства, истинно. Путеводная путаница, софистика-эквилибристика!

Есть и другой способ доказательства: создать некий механизм по производству простых чисел. Мы засыпаем в него пригоршню простых чисел и – вуаля! – оттуда высыпаются новые простые числа. Вот как работает эта машина.

Зачерпнем полдюжины простых чисел: 2, 3, 5, 7, 11 и 13. Перемножим их и приплюсуем единицу:

(2 × 3 × 5 × 7 × 11 × 13) + 1 = 30 031.

Ясно, что 30 031 не делится на 2, – это легко заметить, потому что последняя цифра нечетная. На 3 оно тоже не делится (потому что на единицу больше, чем 2 × 3 × 5 × 7 × 11 × 13, которое делится на 3). Точно так же оно не делится на 5, 7, 11 и 13. Стало быть, или это число само простое, или его можно разложить на простые множители, не входящие в наш перечень. Кости выпали так, что число 30 031 – составное. Оно раскладывается на простые множители следующим образом: 59 × 509. Этих чисел не было в нашем перечне.

Возьмем их и предыдущие полудюжины чисел и построим новое число:

(2 × 3 × 5 × 7 × 11 × 13 × 59 × 509) + 1,

что равно 901 830 931. Кости выпали так, что число оказалось простым[23].

Мы можем добавить его в наш перечень и наштамповать так еще много чисел – либо простых, либо разложимых на простые множители. Эта операция позволяет бесконечно получать все новые и новые простые числа.

Другое доказательство

Это не единственное доказательства того, что простых чисел бесконечно много. Вот вам еще одно.

Как и в первом доказательстве, предположим, что количество простых чисел конечно, и покажем, что это предположение ведет к противоречию. Представим, что самое большое простое число равно P, и составим перечень простых чисел:

2, 3, 5, 7, 11, 13, …, P.

Пусть N – результат перемножения всех этих чисел:

N = 2 × 3 × 5 × 7 × 11 × 13 × … × P.

1 2 3 4 5 6 7 8 9 10 ... 67
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?